Symmetric Functions: Problem Set 11

- 1. Complete the proof of the hook-content formula by simplifying the product obtained in class into the required form.
- 2. Prove that the skew Schur functions are symmetric functions by adapting the argument used for Schur functions (free and paired occurrences of i, i + 1 etc).
- 3. Prove that:

$$\omega(s_{\lambda/\mu}) = s_{\lambda'/\mu'}$$

4. Let μ, ν be partitions of d; thus $V(\mu), V(\nu)$ and $V(\mu) \otimes V(\nu)$ are all representations of S_d . Define:

$$\chi_{\mu} * \chi_{\nu} := \chi_{V(\mu) \otimes V(\nu)}$$

We have

$$\chi_{\mu} * \chi_{\nu} = \sum_{\lambda \in \operatorname{Par}(d)} g_{\mu\nu}^{\lambda} \chi_{\lambda}$$

The $g^{\lambda}_{\mu\nu}$ are nonnegative integers, called the *Kronecker coefficients*. Prove that $g^{\lambda}_{\mu\nu}$ is symmetric in μ, ν, λ .

5. Let x, y respectively denote the infinite list of variables x_1, x_2, \cdots and y_1, y_2, \cdots . Prove that:

$$s_{\lambda}(xy) = \sum_{\mu,\nu} g^{\lambda}_{\mu\nu} \, s_{\mu}(x) s_{\nu}(y)$$

where xy denotes the list of variables x_iy_j for $(i, j) \in \mathbb{N} \times \mathbb{N}$. Hint: Expand in terms of power sums first.

6. Prove :

$$\prod_{i,j,k} \frac{1}{1 - x_i y_j z_k} = \sum_{\lambda,\mu,\nu} g_{\mu\nu}^{\lambda} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z)$$

7. Define

$$\zeta := \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \sum_{\mu} h_{mu}(x) m_{\mu}(y)$$

each side being equal to $\prod_{i,j} \frac{1}{1 - x_i y_j}$.

- (a) Verify that $\zeta = \sum_{\alpha} y^{\alpha} h_{\alpha}(x)$ where the sum runs over all possible multi-indices α .
- (b) This identity holds if we restrict x and y to finite lists of variables x₁, x₂, ..., x_n and y₁, y₂, ..., y_n. The sums on both sides then run over partitions with at most n parts (since s_λ = 0 = m_μ if λ, μ have more than n parts). Show that s_λ(x) is the coefficient of y^{λ+δ} in ζa_δ(y).
- (c) Recall $a_{\delta} = \sum_{w \in S_n} \operatorname{sgn} w y^{w\delta}$. Use this to show that:

$$s_{\lambda}(x) = \sum_{w \in S_n} \operatorname{sgn} w \, h_{\lambda + \delta - w\delta} \tag{1}$$

where h_i is taken to be zero for i < 0.

(d) Prove that the above expression is nothing but the determinant:

$$\det \left(h_{\lambda_i+j-i}\right)_{i,j=1}^n$$

This identity is called the Jacobi-Trudi identity.

- (e) Derive an analogous expression for s_{λ} in terms of the e_k .
- (f) Use equation (1) to give an expression for the entries $K_{\lambda\mu}^{-1}$ of the inverse Kostka matrix.