Symmetric Functions: Problem Set 10

- 1. Let G be the dihedral group with 2n elements and H its subgroup isomorphic to the cyclic group of order n. What are the irreducible representations of H? What are the dimensions of the irreducible representations of G? For which irreps W of H is $\operatorname{Ind}_{H}^{G} W$ an irrep of G?
- 2. Let G be the cyclic group C_n and let H be its cyclic subgroup isomorphic to C_d (where d|n). For each irrep W of H, describe the decomposition into G-irreps of $\operatorname{Ind}_H^G W$.
- 3. Let $H \subset K \subset G$, and let W be a representation of H. Prove :

$$\operatorname{Ind}_{K}^{G}\left(\operatorname{Ind}_{H}^{K}(W)\right)\cong\operatorname{Ind}_{H}^{G}(W)$$

(use the universal property of the induced representation)

- 4. Prove that the multiplication defined on the ring R (the span of class functions of S_d for all d) is commutative and associative.
- 5. Let V be a finite dimensional representation of S_d , and let χ denote its character. Prove that $ch(\chi)$ is *Schur positive*, i.e., it can be written as a \mathbb{Z}_+ linear combination of Schur functions.
- 6. Prove that the product of any two Schur functions is Schur positive. The non-negative integers $c^{\nu}_{\lambda\mu}$ in:

$$s_{\lambda} \, s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} \, s_{\nu}$$

are called Littlewood-Richardson coefficients.