Symmetric Functions: Problem Set 1¹

1. Let $\lambda = (\lambda_1, \lambda_2, \cdots)$ be a partition (written as an infinite list, with all but finitely many entries zero). Let $m \ge \lambda_1, n \ge \lambda'_1$. Show that the m + n numbers

$$\lambda_i + n - i$$
 $(1 \le i \le n), \quad n - 1 + j - \lambda'_j \quad (1 \le j \le m)$

are a permutation of $\{0, 1, 2, \dots, m + n - 1\}$.

- 2. Let λ, μ be partitions of n such that $\lambda \text{ covers } \mu$ in the dominance order, i.e., $\lambda > \mu$ and if ν is such that $\lambda \ge \nu \ge \mu$, then $\nu = \lambda$ or $\nu = \mu$. Show that λ can be obtained by removing one box from the j^{th} row of μ and moving it to the i^{th} row, for some i < j.
- 3. A matrix of non-negative real numbers is said to be doubly stochastic if its row and column sums are all equal to 1. Let λ, μ be partitions of n. Show that λ dominates μ if and only if there exists a doubly stochastic $n \times n$ matrix M such that $M\lambda = \mu$ (where λ, μ are regarded as column vectors of length n).
- 4. Let λ be a partition. The *hook-length* of λ at $x = (i, j) \in \lambda$ is defined to be

$$h(x) = (\lambda_i - i) + (\lambda'_j - j) + 1.$$

The *content* of x is defined to be c(x) = j - i. Prove that

$$\sum_{x \in \lambda} (h(x)^2 - c(x)^2) = |\lambda|^2.$$

- 5. Show that the set of partitions of n under the dominance order is a *lattice*. In other words, each pair of partitions of n has a greatest lower bound and a least upper bound.
- 6. Let $m \ge 1$.
 - (a) Show that the set $\mathcal{D}(m)$ of strictly decreasing *m*-tuples of nonnegative integers is in bijection with the set of partitions with at most *m* parts under the map $\lambda \mapsto \lambda^{\dagger}$ where $\lambda_i^{\dagger} = \lambda_i - (m-i)$ for all *i*.

¹Reference: I.G. Macdonald, Symmetric Functions and Hall Polynomials.

- (b) Let $\lambda \in \mathcal{D}(m)$, $1 \leq i \leq m$ and $p \geq 1$. Define $u_j = \lambda_j$ for $j \neq i$, and $u_i = \lambda_i - p$. Assume that the $\{u_j : 1 \leq j \leq m\}$ are all distinct, non-negative integers. Let $\mu \in \mathcal{D}(m)$ denote the tuple obtained by rearranging the u_j in descending order. Describe the image μ^{\dagger} of μ under the above bijection.
- 7. Let $\mathcal{P}(n)$ denote the set of partitions of n, and \mathbb{N} the set of positive integers. For each $r \geq 1$, let

$$a(r,n) = \#\{(\lambda,i) \in \mathcal{P}(n) \times \mathbb{N} : \lambda_i = r\}$$

$$b(r,n) = \#\{(\lambda,i) \in \mathcal{P}(n) \times \mathbb{N} : m_i(\lambda) \ge r\}$$

Show that

$$a(r,n) = b(r,n) = p(n-r) + p(n-2r) + \dots$$

where p(m) is the number of partitions of m. Deduce that

$$\prod_{\lambda \in \mathcal{P}(n)} \prod_{i \ge 1} i^{m_i(\lambda)} = \prod_{\lambda \in \mathcal{P}(n)} \prod_{i \ge 1} m_i(\lambda)!$$

8. Keep the above notation. Let $h(r,n) = \#\{(\lambda,x) : \lambda \in \mathcal{P}(n), x \in \lambda \text{ and } h(x) = r\}$, where h(x) is the hook-length of λ at x. Show that h(r,n) = ra(r,n).