EXERCISE SET 2.6

- (1) (Difficulty level 2) Show that the matrix of the character table of a finite group (over the complex numbers) is invertible. More precisely, show that the absolute value of the determinant of the character table is $\prod_g \sqrt{z_g}$, where the product is over a set of representatives g of the conjugacy classes and z_g is the cardinality of the centralizer of g.
- (2) (Difficulty level 2) Show that the restriction to an invariant subspace of a diagonalizable linear operator on a finite dimensional vector space is diagonalizable. Suppose that a representation of a group breaks up into a direct sum of 1-dimensional representations. Show that any invariant subspace also breaks up into a direct sum of 1-dimensional representations.
- (3) (Difficulty level 3) Given a weak composition λ of n with m parts, we have naturally associated to it a 1-dimensional representation homogeneous of degre n of the torus $T_m(K)$ by mapping $\Delta(x_1, \ldots, x_n)$ to the monomial corresponding to λ . Show that this is a bijective correspondence (between such weak compositions and such 1-dimensional representations).
- (4) (Difficulty level 2) Let m be a positive integer and let λ be a partition with at most m parts. Consider the irreducible polynomial representation W_{λ} of $GL_m(\mathbb{C})$. Its character is $s_{\lambda}(x_1, \ldots, x_m)$, where s_{λ} is the Schur function corresponding to λ . Given a weak composition μ of n with m parts, let mon_{μ} be the corresponding monomial of degree n in the variables x_1, \ldots, x_m . We call μ a weight of λ if the coefficient of mon_{μ} is $s_{\lambda}(x_1, \ldots, x_m)$ is not zero. The coefficient itself (in case it is not zero) is called the *multiplicity* of the weight μ in W_{λ} .
 - Let λ be a partition of n with at most 2 parts. Determine the weights and their multiplicities in the $GL_2(\mathbb{C})$ module W_{λ} .
 - Determine the weights and their multiplicities of the $GL_m(\mathbb{C})$ -modules $W_{(n)}$ and $W_{(1^n)}$.
- (5) (Difficulty level 3) Let $V = (K^m)^{\otimes n}$, where K is a field. Let ρ be the representation of \mathfrak{S}_n on V, and θ be the representation of $GL_m(K)$ on V. Let w be in \mathfrak{S}_n . Show that the trace of $\rho(w) \cdot \theta(\Delta(x_1, \ldots, x_m))$ equals $\sum_{\lambda} \chi_{\lambda}(w) s_{\lambda}(x_1, \ldots, x_m)$, as the sum varies over all partitions λ of n.

Hint: This is Lemma 6.5.1 in Amri's book. We have $V \simeq K[I(n,m)]$ (as \mathfrak{S}_n -modules) where I(n,m) = I denotes the set of all functions from [n] to [m], for the standard basis of $(K^m)^{\otimes n}$ is indexed by I. Note that the standard basis elements form common eigenvectors for the action of the torus (diagonal subgroup of GL_m), and are permuted by elements of \mathfrak{S}_n . Let W be the set of weak compositions of n with m parts. There is a "type map" $I \to W$, and two elements of I belong to the same orbit of \mathfrak{S}_n if and only if their types are the same. So we may write $K[I] = \bigoplus_{\tau} K[I_{\tau}]$, where τ varies over W and I_{τ} is the fibre over τ of the type map. On each $K[I_{\tau}]$, each element of the torus acts like a scalar, like the monomial corresponding to τ .

From W to the set P of partitions of n we have a natural map: put the constituents of the weak composition in weakly decreasing order. For a partition μ of n, the \mathfrak{S}_n -representation $K[X_{\tau}]$ is isomorphic to $K[X_{\mu}]$ for all τ in the fibre in W over μ . Let us fix μ in P and consider $\sum_{\tau \in W, \tau \mapsto \mu} K[I_{\tau}]$. The trace of $\rho(w) \cdot \theta(\Delta(x_1, \ldots, x_m))$ on this is $\operatorname{Trace}(w, K[X_{\mu}]) \cdot m_{\mu}(x_1, \ldots, x_m)$.

Now $K[X_{\mu}] = \sum_{\nu} V_{\nu}^{\oplus K_{\nu\mu}}$. So the required trace is

$$\sum_{\mu} \sum_{\nu} K_{\nu\mu} \chi_{\nu}(w) m_{\mu}(x_1, \dots, x_m)$$
$$= \sum_{\nu} \chi_{\nu}(w) \left(\sum_{\mu} K_{\nu\mu} m_{\mu}(x_1, \dots, x_m) \right)$$
$$= \sum_{\nu} \chi_{\nu}(w) \cdot s_{\nu}(x_1, \dots, x_m)$$