EXERCISE SET 2.5

Throughout, K denotes a field and I(n,m) the set of maps from [n] to [m]. There is a natural action of \mathfrak{S}_n on I(n,m).

(1) (Difficulty level 2) Consider a vector space over K of dimension m, say K^m . Consider $(K^m)^{\otimes n} = K^m \otimes \cdots \otimes K^m$ (n times). Let \mathfrak{S}_n act on this by permuting the factors $\sigma(v_1 \otimes \cdots v_m) := v_{\sigma^{-1}1} \otimes \cdots \otimes v_{\sigma^{-1}m}$. Show that $K[I(n,m)] \simeq (K^m)^{\otimes n}$. Conclude that:

$$S_K(m,n) \simeq \operatorname{End}_{\mathfrak{S}_n}((K^m)^{\otimes n})$$

(2) (Difficulty level 3) Let R be the K-algebra $M_2(K) \times M_3(K)$. Let φ be the inclusion of R in $M_{11}(K)$ given by

 $(A, B) \mapsto$ block diagonal (A, A, A, A, B)

Let C denote the commutant in $M_{11}(K)$ of the image $\varphi(R)$. Show that C is a semisimple algebra. Determine its Wedderburn decomposition. How does the defining representation K^{11} of $M_{11}(K)$ decompose as a C-module? Determine C as a subset of $M_{11}(K)$.

- (3) (Difficulty level 2) Recall that an element of $(K^m)^{\otimes n}$ is said to be a symmetric *n*-tensor if it is invariant under $\rho(w)$ for every w in \mathfrak{S}_n . Assuming K to be algebraically closed of characteristic 0, show that the space of symmetric tensors is a simple $GL_m(K)$ -module of dimension equal to the number of weak compositions of n with at most m parts.
- (4) (Difficulty level 2) Recall that an element of $(K^m)^{\otimes n}$ is said to be an alternating *n*-tensor if it is transforms under $\rho(w)$ by the sign of w, for every w in \mathfrak{S}_n . Assuming K to be algebraically closed of characteristic 0, show that the space of alternating tensors is either zero (iff m < n) or is a simple $GL_m(K)$ -module of dimension equal to $\binom{m}{n}$.
- (5) (Difficulty level 3) Let K be algebraically closed of characteristic 0. Determine the partitions λ with at most m parts for which the corresponding irreducible $GL_m(K)$ -module W_{λ} is one dimensional. Show that the non-negative integral powers of the determinant are the only 1-dimensional polynomial representations of $GL_m(K)$.
- (6) (Difficulty level 2) Compute the dimensions and characters of the representation $W_{2,1}$ of $GL_2(\mathbb{C})$ and the representation $W_{2,1}$ of $GL_3(\mathbb{C})$.
- (7) (Difficulty level 3) Show that the set of diagonalizable $m \times m$ complex matrices is dense (with respect to the usual topology) in the space of all $m \times m$ complex matrices. Deduce that the set of diagonalizable invertible $m \times m$ matrices is dense in the space of all invertible $m \times m$ complex matrices. State and prove an analogous statement over an arbitrary algebraically closed field with respect to the "Zariski topology".
- (8) (Difficulty level 3) Recall that the "convolution" product of two elements α and β of $S_K(m)$ is defined as follows:

$$(\alpha \star \beta)(f) = \iint f(xy) \, d\alpha(x) \, d\beta(y)$$

Show that the order of integration in the above can be reversed, or in other words that:

$$\iint f(xy) \, d\alpha(x) \, d\beta(y) = \iint f(xy) \, d\beta(y) \, d\alpha(x)$$

(9) (Difficulty level 2) Express the element δ_I (where I stands for the $m \times m$ identity matrix) as a linear combination of the "standard basis" $\epsilon_{\underline{i},\underline{j}}$ of $S_K(m)$ where $(\underline{i},\underline{j})$ varies over a set of representatives of the \mathfrak{S}_n -orbits of $I(n,m) \times I(n,m)$.