Exercise set 2.4

Throughout, K denotes a field. We denote:

- by I(n,m) the set of maps from [n] to [m],
- by OP(n,m) the set of partitions of [n] into m ordered parts.

These sets come with natural actions of \mathfrak{S}_n on them.

- (1) (Difficulty level 1) Let X be a finite set on which a group G acts. Show that KX (the free K-vector space generated by X) and K[X] (the space of K-valued functions on X) are isomorphic as G-representations via $x \mapsto \delta_x$.
- (2) (Difficulty level 1) Show the following: for elements \underline{p} and \underline{q} of I(n, m) and A, B matrices of size $m \times m$ (with entries over some field or commutative ring), $(AB)_{\underline{p},\underline{q}} = \sum_{\underline{t} \in I(n,m)} A_{\underline{p},\underline{t}} \cdot B_{\underline{t},\underline{q}}$.
- (3) (Difficulty level 1) Describe a "natural" bijection between I(n,m) and OP(n,m) that preserves type and is \mathfrak{S}_n -equivariant.
- (4) (Difficulty level 1) Let λ be a weak composition of n into m parts. Let λ^1 be the partition of n into at most m parts obtained by putting the constituents of λ in weakly decreasing order. Let X_{λ} be the set of all ordered partitions of n into m parts with type λ . Observe that X_{λ} and X_{λ^1} are isomorphic as \mathfrak{S}_n -sets.
- (5) (Difficulty level 3) Work out the multiplicative structure constants of $S_K(m, n)$ for some small values of m and n.