EXERCISE SET 2.2

Throughout, K denotes a field and V a vector space over K of finite dimension $d \ge 1$. We fix an integer $m \ge 1$ and denote by G the group $GL_K(m)$. We denote by $A_K(m)$ the ring of polynomial functions on G and by $S_K(m)$ and $S_K(m, n)$ the appropriate Schur algebras (as defined in the lecture).

- (1) (Difficulty level 2) What is the dimension of the K-algebra $S_K(m, n)$?
- (2) (Difficulty level 1) Show that $G \to S_K(m)$ given by $g \mapsto \delta_g$ is an injection. (Here and elsewhere, the "Dirac delta" δ_g denotes the linear functional on $A_K(m)$ given by $f \mapsto f(g)$.)
- (3) (Difficulty level 2) Show that $\delta_g \star \delta_h = \delta_{gh}$ for g and h in G.
- (4) (Difficulty level 3) Recall the following three definitions of the multiplication of two elements α and β in $S_K(m)$. Convince yourself that they are the same:
 - (a) $(\alpha \star \beta)(f) = \iint f(xy) \, d\alpha(x) \, d\beta(y)$
 - (b) $(\alpha \star \beta)(f) = \tilde{\beta}(y \mapsto \alpha(\rho_y f))$, where $\rho_y f(x) := f(xy)$.
 - (c) $(\alpha \star \beta)(f) = \sum_{i} \alpha(f_{i}^{1})\beta(f_{i}^{2})$, where $\Delta(f) = \sum_{i} f_{i}^{1} \otimes f_{i}^{2}$ is the image of f under the "coproduct" Δ , which is the K-algebra map from $A_{K}(m) \to A_{K}(m) \otimes A_{K}(m)$ given by $X_{ij} \mapsto \sum_{k} X_{ik} \otimes X_{kj}$
- (5) (Difficulty level 2) Show that under the multiplication defined as in the previous item, the Schur algebra $S_K(m)$ becomes an associative unital K-algebra. What is its multiplicative identity?
- (6) (Difficulty level 2) Recall that the inclusion of $S_K(m, n)$ in $S_K(m)$ is induced by the natural surjection of $A_K(m)$ onto its *n*-th degree component (which maps any polynomial to its homogeneous component of degree *n*). Show that $S_K(m, n)$ is a two-sided ideal of $S_K(m)$.
- (7) (Difficulty level 2) By Sym(V) we mean the polynomial algebra generated in the variables z_1, \ldots, z_d , where e_1, \ldots, e_d form a basis of V. Note that Sym(V) is a polynomial ring with the usual grading (where the variables z_1, \ldots, z_d are all considered to be of degree 1). The graded piece of degree n is denoted by Symⁿ(V). There is a natural action of GL(V) on Sym(V) by algebra automorphisms that preserves degrees: for g in GL(V), we let $gz_j = a_1(g)z_1 + \ldots + a_d(g)z_d$, where $ge_j = a_1(g)e_1 + \ldots + a_d(g)e_d$ (in other words, the action on the variables is the same as that on e_1, \ldots, e_d). The Symⁿ(V) provide examples of polynomial representations of GL(V).