Exercise set 2.1

Throughout K denotes a field and V a vector space over K of finite dimension $d \ge 1$.

- (1) (Difficulty level 1) Convince yourself of the following facts:
 - (a) The notion of a polynomial function on V is independent of the choice of a basis for V.
 - (b) Any invariant subspace and any quotient of a polynomial representation of GL(V) is a polynomial representation.
 - (c) Any invariant subspace and any quotient of a homogeneous polynomial representation of GL(V) is a homogeneous polynomial representation of the same degree.
 - (d) If U and W are polynomial representations of $GL_K(V)$, then so are $U \oplus W$ and $U \otimes W$.
 - (e) If U and W are homogeneous polynomial representations of $GL_K(V)$ of degrees p and q respectively, then $U \otimes W$ is a homogeneous polynomial representation of GL(V)of degree p + q.
 - (f) $g \mapsto \det^e g$ for e an integer $e \ge 0$ defines a homogeneous polynomial representation of $GL_K(V)$ of degree de.
- (2) (Difficulty level 2) Show the following: K is infinite if and only if there is a unique polynomial (with respect to any fixed basis) that represents any fixed polynomial function on V.
- (3) (Difficulty level 2) Suppose that K is finite of cardinality q. Determine the kernel of the surjective K-algebra morphism from $K[X_1, \ldots, X_d]$ to the ring K[V] of polynomial functions on V. What is the dimension (as a K-vector space) of K[V]?
- (4) (Difficulty level 2) Suppose that K is infinite. Show that the natural restriction map from polynomial functions on $End_K(V)$ to functions on $GL_K(V)$ is an injection. (We may thus identify polynomial functions on $GL_K(V)$ with those on $End_K V$.)
- (5) (Difficulty level 2) Write a compact expression (as a rational function in t) for the formal power series $\sum_{n\geq 0} t^n \dim_K K[X_1,\ldots,X_d]_n$, where $K[X_1,\ldots,X_d]$ is the polynomial ring in d variables and $K[X_1,\ldots,X_d]_n$ is its subspace of polynomials of degree n.