Exercise set 1

Throughout G denotes a group, and k a field.

- (1) Check that the following two definitions of a k-algebra are equivalent:
 - R is a k-vector space and a ring with the underlying additive group of R in both cases being the same; the multiplication $R \times R \to R$ is k-bilinear.
 - R is a ring and there is a ring homomorphism $k \to R$ whose image lies in the centre of R.
- (2) Check that the following two definitions of a k-linear representation V of a group G are equivalent:
 - $G \to GL(V)$ is a group homomorphism
 - V is a kG-module (in other words, there exists a k-algebra homomorphism from $kG \rightarrow \operatorname{End}_k(V)$)
- (3) Let V be a vector space over k of finite dimension $n \ge 1$. Then $\operatorname{End}_k V$ is identified with the k-algebra $M_n(k)$ of $n \times n$ matrices over k.
 - For a subspace W, define $\ell_W := \{ \varphi \in \operatorname{End}_k V | \varphi(W) = 0 \}$. Show that ℓ_W is a left ideal in $\operatorname{End}_k V$, and moreover that every left ideal of $\operatorname{End}_k V$ is of the form ℓ_W for some W.
 - For a subspace W, define $\rho_W := \{\varphi \in \operatorname{End}_k V | \varphi(V) \subseteq W\}$. Show that ρ_W is a right ideal in $\operatorname{End}_k V$, and moreover that every right ideal of $\operatorname{End}_k V$ is of the form ρ_W for some W.
 - Show that $\operatorname{End}_k V$ is a simple k-algebra. (That is, it has precisely two two-sided ideals, namely, zero and itself.)
- (4) A multiplicative character of a group G is a group homormorphism from G to the (multiplicative) group k^{\times} of the non-zero elements in k. Show that $\sum_{g \in G} \xi(g) = 0$ for any non-trivial multiplicative character ξ of a finite group G. (A multiplicative character is called *trivial* if it is identically 1.)
- (5) For a finite group G determine the centre of the group algebra kG. What is its dimension as a k-vector space?
- (6) Observe that every multiplicative character of G factors through G/(G,G). (Here (G,G) denotes the subgroup generated by the commutators $(g,h) := ghg^{-1}h^{-1}$, as g and h vary over all elements of G.)
- (7) Observe the following: if G is a cyclic group of order n, then the group algebra $kG \simeq k[t]/(t^n 1)$.
- (8) Factorize the following determinant:

x_1	x_2	x_3	•••	x_{n-1}	x_n
$ x_n $	x_1	x_2	•••	x_{n-2}	x_{n-1}
:	÷	÷	÷	÷	÷
x_3	x_4	x_5	• • •	x_1	x_2
x_2	x_3	x_4	• • •	x_n	x_1