REPRESENTATION THEORY OF FINITE GROUPS

PROBLEMS SET 8

- (1) Show that the number of inversions in the transposition (i, j) is 2(j 1 1) + 1, so that $\epsilon((i, j)) = -1$.
- (2) Let V and W be representations of S_n . Show that

 $\operatorname{Hom}_{A_n}(V, W) = \operatorname{Hom}_{S_n}(V, W) \oplus \operatorname{Hom}_{S_n}(V, W \otimes \epsilon).$

- (3) Let X be a set with an action of S_n . Given $x \in X$, show that the S_n -orbit of x is a union of two orbits for the action of A_n if and only if $\operatorname{Stab}_{S_n} x \subset A_n$.
- (4) How many conjugacy classes does A_5 have? What are their cardinalities?
- (5) What must be the dimensions of the irreducible representations of A_5 ?
- (6) Let p(n) denote the number of partitions of n. Let $p_{\text{even}}(n)$ denote the number of partitions of n with an even number of even parts. Let $p_{\text{dop}}(n)$ denote the number of partitions of n with distinct odd parts. Let $p_{\text{sc}}(n)$ denote the number of self-conjugate partitions of n. Prove that:

$$p(n) + 3p_{\rm sc}(n) = 2p_{\rm even}(n) + 2p_{\rm dop}(n).$$

- (7) For an odd integer n > 2, show that a *n*-cycle is conjugate to its inverse in A_n if and only if $\lfloor n/2 \rfloor$ is even.
- (8) An element of A_n with cycle type λ , where λ has distinct odd parts is conjugate to its inverse if and only if

$$\sum_{i=1}^{l} \lfloor \lambda_i / 2 \rfloor$$

is even.

Date: 20th June 2017.