REPRESENTATION THEORY OF FINITE GROUPS

PROBLEMS SET 7

- (1) Perform the combinatorial resolution of the partition representations of S_4 to control all the irreducible representations of S_4 . Use this to derive the character table of S_4 from first principles.
- (2) Let G be a finite group, $\chi : G \to \mathbb{C}^*$ be a character of G. Let X and Y be G-sets. Given $x \in X$ and $y \in Y$, show that there exists a function $k : X \times Y \to \mathbb{C}$ with $k(x, y) \neq 0$ if and only if, for every $g \in G$ such that $g \cdot x = x$ and $g \cdot y = y$, $\chi(g) = 1$.
- (3) Let λ be a partition of n, and $(\rho, \mathbf{C}[X_{\lambda}])$ be the corresponding partition representation. Show that $\det(\rho(w)) = 1$ for all $w \in S_n$ if and only if

$$\sum_{1 \le i < j \le l} \binom{n-2}{\lambda_1, \dots, \lambda_{i-1}, \lambda_i - 1, \lambda_{i+1}, \dots, \lambda_{j-1}, \lambda_j - 1, \lambda_{j+1}, \dots, \lambda_l}$$

is even (this is a multinomial coefficient of n-2. In the lower row, the *i*th and *j*th parts of λ are reduced by 1).

(4) Show that $[S_n, S_n] = A_n$.

Date: 19th June 2017.