REPRESENTATION THEORY OF FINITE GROUPS

PROBLEMS SET 4

(1) Find the 5×4 matrix A to which the VRSK algorithm would associate the SSYTs:

$$P = \frac{1}{2} \frac{1}{4} \frac{2}{3} and Q = \frac{1}{2} \frac{1}{5} \frac{3}{3} \frac{4}{4}.$$

- (2) Find the matrices A for which both P and Q have the same shapes as their types.
- (3) If λ and μ are partitions such that $\mu \leq \lambda$ (in the reverse dominance order), then show that μ comes after λ in lexicographic (dictionary) order.
- (4) List all the partitions of n in reverse lexicographic order:

$$\lambda^{(1)},\ldots,\lambda^{(p)},$$

where p is the number of partitions of n. Define $p \times p$ matrices

$$M = (M_{\lambda^{(i)}, \lambda^{(j)}}), \text{ and } K = (K_{\lambda^{(i)}\lambda^{(j)}}).$$

Compute M and K for n = 2, 3, 4. Verify that M = K'K.

(5) Recall that the conjugate of a partition λ is defined by

$$\lambda_i' = \#\{j \mid \lambda_j \ge i\}.$$

Show that conjugation reverses dominance:

 $\lambda \leq \mu$ if and only if $\mu' \leq \lambda'$.

(6) Using the notation of problem (4), given n, define a $p \times p$ matrix:

$$N = (N_{\lambda^{(i)},\lambda^{(j)}}), \text{ and } J = (\delta_{\lambda^{(i)},\lambda^{(j)'}}).$$

Here δ is the Kronecker delta symbol. For n = 2, 3, 4, verify that N = K'JK.

Date: 15th June 2017.