REPRESENTATION THEORY OF FINITE GROUPS

PROBLEMS SET 3

- (1) Let A be an integer matrix with RSK(A) = (P, Q). Describe RSK(mA) for any positive integer m.
- (2) Given non-negative integers *a* and *b*, describe the shape of the tableaux in RSK($\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$). What about the tableaux corresponding to $\begin{pmatrix} 0 & 0 & a \\ 0 & b & 0 \\ c & 0 & 0 \end{pmatrix}$?
- (3) Given a subset $S \subset \{1, \ldots, n\}$ of size k, where $k \leq n/2$, let A_S denote the $n \times 2$ matrix with entries defined by

$$a_{i1} = \begin{cases} 0 & \text{if } i \in S, \\ 1 & \text{otherwise.} \end{cases}, \quad a_{i2} = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Note that every $n \times 2$ matrix with row sums all one, and column sums (n - k, k) is of the form A_S for some such S. Supose that $RSK(A_S) = (P_S, Q_S)$. Show that $\phi_{n,k} : S \mapsto Q_S$ is a bijection from the set of subsets of $\{1, \ldots, n\}$ of size k onto the set of all standard Young tableaux of shape (n - l, l) for some $0 \le l \le k$. This gives a bijective proof of the identity

$$\binom{n}{k} = \sum_{l=0}^{k} f_{(n-k,k)},$$

for $k \leq n/2$ (see Problems Set 1, Ex. 3(b)).

- (4) Enumerate the six subsets of size 2 in $\{1, 2, 3, 4\}$. Compute $\phi_{4,2}(S)$ for each of these subsets S.
- (5) Give a direct construction of the bijection $\phi_{n,k}$ without using the RSK correspondence.

Date: 14th June 2017.