AFFINE LIE ALGEBRAS - PROBLEM SET 2

All Lie algebras are over \mathbb{C} .

(1) Let $n \ge l$; suppose we have a $(2n-l) \times (2n-l)$ symmetric matrix with a block decomposition

where A is an $n \times n$ symmetric matrix and B is an $n \times (n - l)$ matrix. Show that if rank A = l and rank $(A \mid B) = n$, then the matrix is invertible. Is the converse true ?

- (2) If R is a commutative \mathbb{C} -algebra and \mathfrak{g} a Lie algebra, show that $\operatorname{Der}(R \otimes \mathfrak{g}) = \operatorname{Der}(R) \otimes \operatorname{id}_{\mathfrak{g}} + R \otimes \operatorname{Der}(\mathfrak{g}).$
- (3) With notation as in Monday's last lecture: Let $X_l^{(1)}$ denote the extended Cartan matrix of a finite dimensional semisimple Lie algebra $\mathring{\mathfrak{g}}$. Let $\mathfrak{h} := \mathring{\mathfrak{h}} \oplus \mathbb{C}K \oplus \mathbb{C}d$, $\Pi = \{\alpha_0, \dots, \alpha_l\}$, $\Pi^{\vee} = \{\alpha_0^{\vee}, \dots, \alpha_l^{\vee}\}$. Here, $\alpha_i \in \mathring{\mathfrak{h}}^*$ (for $i = 1 \cdots l$) is extended to \mathfrak{h}^* by zero on K and d; $\alpha_0 := \delta - \theta$ where $\delta(\mathring{\mathfrak{h}}) = 0, \delta(K) = 0, \delta(d) = 1; \alpha_i^{\vee}(i = 1 \cdots l) \in \mathring{\mathfrak{h}} \subset \mathfrak{h}; \alpha_0^{\vee} = -\theta^{\vee} + K$. Now, check that $(\mathfrak{h}, \Pi, \Pi^{\vee})$ is a realization of the matrix $X_l^{(1)}$.
- (4) Let $(V, (\cdot | \cdot))$ be a real inner product space and let α_i , $i = 1 \cdots n$ be **any non-zero vectors** (not necessarily linearly independent) in V. Define the $n \times n$ matrix $A := [a_{ij}]$ where $a_{ij} := \frac{2(\alpha_i | \alpha_j)}{(\alpha_i | \alpha_i)}$. Show that A is symmetrizable. Use this to show that the Cartan matrices and the extended Cartan matrices associated to finite dimensional simple Lie algebras are symmetrizable.
- (5) Let \mathfrak{g} be one of the Lie algebras \mathfrak{sl}_2 or \mathfrak{sl}_3 . Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{g} and $l := \dim(\mathfrak{h})$. Let $(\cdot | \cdot)$ be a nondegenerate invariant form on \mathfrak{g} (for eg, the Killing form). Let $\alpha_i \in \mathfrak{h}^*$ $(i = 1 \cdots l)$ denote the simple roots of \mathfrak{g} . Find all nonzero vectors v in \mathfrak{h}^* such that setting $\alpha_{l+1} := v$ makes the $(l+1) \times (l+1)$ matrix $A := \left[\frac{2(\alpha_i | \alpha_j)}{(\alpha_i | \alpha_i)}\right]_{i,j=1}^{l+1}$ a generalized Cartan matrix.