ROOT SYSTEMS

JULY 4-8, 2011

- (1) (a) If R is a root system in V, then $R^{\vee} := \{\alpha^{\vee} : \alpha \in R\}$ is a root system in V^* .
 - (b) $R^{\vee\vee} = R$ (under the natural identification between V and V^*).
 - (c) Recall we have a natural isomorphism $\phi : GL(V) \to GL(V^*)$ defined by $g \mapsto ({}^tg)^{-1}$ where for $g: V \to V$, tg is the induced map defined by ${}^tg(f)(v) := f(gv)$ for $f \in V^*, v \in V$. If $\alpha \in R$ and $g \in A(R)$, then $(g\alpha)^{\vee} = \phi(g)(\alpha^{\vee})$.
 - (d) $\phi(s_{\alpha,\alpha^{\vee}}) = s_{\alpha^{\vee},\alpha}$.
 - (e) $W(R) \cong W(R^{\vee})$ and $A(R) \cong A(R^{\vee})$.
- (2) If (V, R) is a root system, prove that $(x|y) := \sum_{\alpha \in R} \langle \alpha^{\vee}, x \rangle \langle \alpha^{\vee}, y \rangle$ defines a positive definite symmetric bilinear form on V that is A(R)-invariant.
- (3) If $R = \bigoplus_i R_i$ is a direct sum of root systems, prove that $W(R) \cong \prod_i W(R_i)$.
- (4) (a) If (V, R) is an irreducible root system, recall that V is an irreducible W(R)-module. Prove that a linear map T: V → V which commutes with every element of W(R) must be a scalar operator; in other words, V is an absolutely irreducible representation of W(R). Hint: This is the statement of Schur's lemma, but the field is now ℝ, rather than ℂ. But try to tweak the proof of Schur's lemma.
 - (b) Prove that when R is irreducible, any W(R)-invariant form on V must be a multiple of the form defined in problem 2.
- (5) Let α, β be non-proportional roots. Prove that s_{α} and s_{β} commute $\iff n(\alpha, \beta) = n(\beta, \alpha) = 0$. More generally, determine the order of the element $s_{\alpha}s_{\beta} \in W(R)$ as a function of $n(\alpha, \beta)n(\beta, \alpha)$.
- (6) Let α, β be non-proportional roots in R. Then
 - (a) The set J of integers j such that $\beta + j\alpha \in R$ is an interval $[-q, p] \cap \mathbb{Z}$.
 - (b) If $S = \{\beta + j\alpha : j \in J\}$, then $s_{\alpha}(S) = S$ and $s_{\alpha}(\beta + p\alpha) = \beta q\alpha$.
 - (c) $p-q = -n(\beta, \alpha)$.
- (7) (a) If α, β are roots such that n(α, β) = n(β, α) = -1, then ∃w ∈ W(R) such that β = wα.
 (b) If R is an irreducible root system, and α, β are roots of the same length, then ∃w ∈ W(R) such that β = wα.
- (8) If R is a reduced, irreducible root system in the Euclidean space V, (,), show that $\frac{(\beta,\beta)}{(\alpha,\alpha)}$ can only take one the values 1, 2, 1/2, 3, 1/3. Further, at most two root lengths occur in R.
- (9) Let R be an irreducible, non-reduced root system of rank ≥ 2 .
 - (a) Let R_0 be the set of *indivisible* roots of R (i.e $\alpha \in R$ for which $\frac{1}{2}\alpha \notin R$). Prove that R_0 is a reduced irreducible root system and $W(R_0) = W(R)$.
 - (b) Let A be the set of roots α for which (α, α) is minimal $(= \lambda, \text{ say})$. Then any two distinct positive roots in A are orthogonal.

for more problems, see Bourbaki's Lie Groups and Lie algebras, Chapters 4-6.

- (c) Let B be the set of $\beta \in R$ such that $(\beta, \beta) = 2\lambda$. Then $B \neq \emptyset$, $R_0 = A \cup B$, $R = A \cup B \cup 2A$.
- (10) (a) Prove that every symmetric bilinear form on V which is W(R)-invariant is also A(R)invariant.
 - (b) Prove that W(R) is a normal subgroup of A(R).
 - (c) Let B be a basis of R and G be the subgroup of A(R) which preserves B. Prove that A(R) is the semidirect product of W(R) and G.
- (11) Let R be a reduced root system with basis $\{\alpha_i : i = 1 \cdots l\}$. If $\alpha = \sum_i c_i \alpha_i$ is a root, prove that $c_i(\alpha_i, \alpha_i)/(\alpha, \alpha) \in \mathbb{Z}$ for all i.
- (12) Construct the root systems of exceptional types E_6, E_7, E_8, F_4, G_2 .
- (13) Let R be an irreducible reduced root system, C be a chamber of R, and B(C), the corresponding basis. Prove that:
 - (a) There is a unique root θ such that $\theta \geq \alpha$ for every $\alpha \in R$, where the partial ordering is defined by B(C).
 - (b) $\theta \in C$.
 - (c) $(\theta, \theta) \ge (\alpha, \alpha)$ for all $\alpha \in R$.
 - (d) For every positive root $\alpha \neq \theta$, we have $n(\alpha, \theta) = 0$ or 1.
 - (e) For each root system A G, find θ .
 - (f) The Coxeter number of R is defined to be $h := \text{height}(\theta) + 1$, where the height of a root is just the sum of the coefficients obtained when the root is written in terms of the basis B(C).
- (14) Let R be an irreducible reduced root system, C be a chamber of R, and B the corresponding basis. Let $\rho := \frac{1}{2} \sum_{\alpha \in B^+} \alpha$. Prove that:
 - (a) $s_{\alpha}(\rho) = \rho \alpha$ for all $\alpha \in B$.
 - (b) $\langle \rho, \alpha^{\vee} \rangle = 1$ for all $\alpha \in B$.
 - (c) $\rho \in C$.
- (15) Verify the following relation case-by-case. If R is an irreducible reduced root system of rank l and Coxeter number h, then |R| = lh.