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The Belt Trick
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Observe that the twisted belt cannot be 
    untwisted by these transformations
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 Hence the twice rotated belt can be transformed
 to the untwisted belt while the once rotated belt 
 cannot. This is called   THE BELT TRICK  
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One needs to construct an appropriate invariant.
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`
  Along the centre line of the belt consider two 
perpendicular vectors along the plane of the belt

For every belt configuration we get 
an interval I (= [0,1]) of pairs of 
perpendicular vectors in space (R3) 
which vary continuously. Hence one 
has a function :

      Belt 
configurations

Maps from I to 
pairs of perpendicular 
vectors in R3 with same 
value at 0 and 1.
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Consider V
1 
= { unit vectors in R3 }

                  = S2

This makes V
1
 a 

topological space

0

V
2 
= { pairs of perpendicular unit vectors in R3 } 

    = { (u,v) є R3 x R3 | |u|=1, |v|=1, u.v = 0 }

This gets a topology as a subset of  R3 x R3

    

Define : 
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with the corresponding vectors as columns. This is 
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Any orthogonal 2x2 matrix of determinant 1 is a 
rotation. This implies that SO(2) ≈ S1 (the circle).

Any orthogonal 3x3 matrix of determinant 1 fixes 
a vector v (one can check that 1 is an eigenvalue).  

Consider a ball of radius π ( B
π
 ) in R3

●
●a v

Rotation by angle a in the 
plane normal to v 
(note Φ(v) = -v) 

Φ

Therefore, SO(3) ≈ B
π 
/ (v = -v) ≈ RP3 

                                          (3 – dim real projective space) 
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map γ : I  X so that → γ(0) = γ(1) .  

X γ
X

γ

Two loops γ and γ' are said to be homotopic (γ ~ γ')
 if there is a continuous deformation from γ to γ'. 

γ'

γ ~ γ'

γ'

γ''

γ ~ γ' but γ ~ γ''
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Suppose X is a topological space and x is a point of 
X. Define : 

π
1
(X,x) = { loops starting and ending at x 

     (γ(0) =  γ(1) = x) 
}

(Homotopy fixing x)

Elements of π
1
(X,x) can be multiplied : 

●x

a

`

b

a.b = the loop a followed by b 

a.b

With this multiplication π
1
(X,x) 

becomes a group.



  

Example : X = the circle S1 and x = any point in S1 



  

Example : X = the circle S1 and x = any point in S1 

●x

a



  

Example : X = the circle S1 and x = any point in S1 

●x

a

The loop a is homotopic 
to the circle thought of 
as a loop. 



  

Example : X = the circle S1 and x = any point in S1 

●x

a

The loop a is homotopic 
to the circle thought of 
as a loop. 

In fact, two loops are homotopic if and only if they 
wind around the circle the same number of times in 
the same direction.  



  

Example : X = the circle S1 and x = any point in S1 

●x

a

The loop a is homotopic 
to the circle thought of 
as a loop. 

In fact, two loops are homotopic if and only if they 
wind around the circle the same number of times in 
the same direction. This demonstrates :  

π
1
(S1,x) = Z ( the group of integers )
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We have seen the map 

{ Belt configurations } { loops in RP3 }

A deformation of belt configurations leads to a 
homotopy of the corresponding loops. Therefore 
we get an invariant :  

{ Belt configurations } π
1
(RP3,x)

(x is some point of RP3)
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B
r

Any loop in RP3 can be homotoped to 
miss an interior point of the ball. Such 
a loop can be expanded radially to 
homotope it to the boundary sphere 
(image in RP3).  

S2

Similarly any loop can be made to miss 
a point and such a loop can be 
homotoped to the equator. 
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 S1/(x=-x). The corresponding loop α in RP3 is the 
boundary of a disc (image of the sphere). This 
shows  that α is homotopic to constant. 

The image of the half circle in RP3 is a loop β as the 
end points map to the same point. This cannot be 
homotoped to a constant. Also note  α = β.β .   

Therefore,        π
1
(RP3,x) ≈ Z

2 

(the group of integers modulo 2)



  

We have constructed an invariant : 

{ Belt configurations } π
1
(RP3,x)



  

We have constructed an invariant : 

{ Belt configurations } π
1
(RP3,x)

We can compute this to show



  

We have constructed an invariant : 

{ Belt configurations } π
1
(RP3,x)

We can compute this to show

β є π
1
(RP3,x) 



  

We have constructed an invariant : 

{ Belt configurations } π
1
(RP3,x)

We can compute this to show

β є π
1
(RP3,x) 

This is a non-trivial
element.



  



  

β.β = α є π
1
(RP3,x) 



  

β.β = α є π
1
(RP3,x) 

This is homotopically 
trivial.
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