The Belt Trick

Suppose that we keep top end of a belt fixed and rotate the bottom end in a circle around it.

Suppose that we keep top end of a belt fixed and rotate the bottom end in a circle around it.

Observe that the twisted belt cannot be untwisted by these transformations

Hence the twice rotated belt can be transformed to the untwisted belt while the once rotated belt cannot. This is called THE BELT TRICK In order to understand the Belt trick one needs to consider the transformations.

In order to understand the Belt trick one needs to consider the transformations.

These are precisely rigid twists preserving ends. In order to understand the Belt trick one needs to consider the transformations.

These are precisely rigid twists preserving ends.

One needs to construct an appropriate invariant.

For every belt configuration we get an interval I (= [0,1]) of pairs of perpendicular vectors in space (R³) which vary continuously.

For every belt configuration we get an interval I (= [0,1]) of pairs of perpendicular vectors in space (R³) which vary continuously. Hence one has a function :

Belt configurations

For every belt configuration we get an interval I (= [0,1]) of pairs of perpendicular vectors in space (R³) which vary continuously. Hence one has a function :

Belt configurations Maps from I to pairs of perpendicular vectors in R³ with same value at 0 and 1.

Consider $V_1 = \{$ unit vectors in $\mathbb{R}^3 \}$ = S^2 (the sphere)

Consider $V_1 = \{ \text{ unit vectors in } \mathbb{R}^3 \}$

 $= S^{2}$

Consider $V_1 = \{ \text{ unit vectors in } \mathbb{R}^3 \}$

 $= S^{2}$

Define :

 $V_2 = \{ \text{ pairs of perpendicular unit vectors in } \mathbb{R}^3 \}$ = $\{ (u,v) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid |u|=1, |v|=1, u.v = 0 \}$

Consider $V_1 = \{ \text{ unit vectors in } \mathbb{R}^3 \}$ $= S^{2}$ This makes V, a topological space Define :

 $V_2 = \{ \text{ pairs of perpendicular unit vectors in } \mathbb{R}^3 \}$ = $\{ (u,v) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid |u|=1, |v|=1, u.v = 0 \}$

This gets a topology as a subset of $\mathbb{R}^3 \times \mathbb{R}^3$

Therefore, $V_2 \approx \{ \text{ oriented three frames } \}$

Therefore, $V_2 \approx \{ \text{ oriented three frames } \}$

For each oriented three frame, form the matrix with the corresponding vectors as columns. This is an orthogonal matrix of determinant 1. The set of these matrices is called SO(3).

Therefore, $V_2 \approx \{ \text{ oriented three frames } \}$

For each oriented three frame, form the matrix with the corresponding vectors as columns. This is an orthogonal matrix of determinant 1. The set of these matrices is called SO(3).

Therefore, $V_2 \approx SO(3)$.

Any orthogonal 3x3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Any orthogonal 3x3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Consider a ball of radius π (B_{π}) in \mathbb{R}^3

Any orthogonal 3x3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Consider a ball of radius π (B_{π}) in R^3

 $\overline{\Phi}$

Rotation by angle a in the plane normal to v (note $\Phi(v) = -v$)

Any orthogonal 3x3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Consider a ball of radius π (B_{π}) in \mathbb{R}^3

 Φ

Rotation by angle a in the plane normal to v (note $\Phi(v) = -v$)

Therefore, SO(3) $\approx B_{\pi} / (v = -v) \approx RP^3$ (3 - dim real projective space) A belt configuration yields a map $\gamma : I \rightarrow V_2$ such that $\gamma(0) = \gamma(1)$. This is a loop in V_2 .

A belt configuration yields a map $\gamma : I \rightarrow V_2$ such that $\gamma(0) = \gamma(1)$. This is a loop in V_2 .

Therefore,

{ Belt configurations }

{ loops in V_2 }

A belt configuration yields a map $\gamma : I \rightarrow V_2$ such that $\gamma(0) = \gamma(1)$. This is a loop in V_2 .

Therefore,

{ Belt configurations }

{ loops in V_2 } $\|$ { loops in SO(3) } A belt configuration yields a map $\gamma : I \rightarrow V_2$ such that $\gamma(0) = \gamma(1)$. This is a loop in V_2 .

Therefore,

{ Belt configurations }

$\pi_1(X, x) = \{ \text{ loops starting and ending at } x \}$ $(\gamma(0) = \gamma(1) = x)$

$\pi_1(X, x) = \{ \text{ loops starting and ending at } x \}$ $(\gamma(0) = \gamma(1) = x)$

(Homotopy fixing x)

Elements of $\pi_1(X,x)$ can be multiplied :

(Homotopy fixing x)

$\pi_{1}(X, x) = \{ \text{ loops starting and ending at } x \}$ $(\gamma(0) = \gamma(1) = x)$

Elements of $\pi_1(X,x)$ can be multiplied :

$\pi_1(X,x) = \{ \text{ loops starting and ending at } x \}$ $(\gamma(0) = \gamma(1) = x)$

Elements of $\pi_1(X, x)$ can be multiplied :

a.b = the loop a followed by b

$\pi_1(X,x) = \{ \text{ loops starting and ending at } x \}$ $(\gamma(0) = \gamma(1) = x)$

Elements of $\pi_1(X,x)$ can be multiplied :

a.b = the loop a followed by b

$\pi_1(X,x) = \{ \text{ loops starting and ending at } x \}$ $(\gamma(0) = \gamma(1) = x)$

Elements of $\pi_1(X,x)$ can be multiplied :

a.b = the loop a followed by b With this multiplication $\pi_1(X,x)$ becomes a group.

a

The loop a is homotopic
a to the circle thought of as a loop.

The loop a is homotopic
a to the circle thought of as a loop.

In fact, two loops are homotopic if and only if they wind around the circle the same number of times in the same direction.

The loop a is homotopic
a to the circle thought of as a loop.

In fact, two loops are homotopic if and only if they wind around the circle the same number of times in the same direction. This demonstrates : $\pi_1(S^1,x) = \mathbb{Z}$ (the group of integers)

We have seen the map

{ Belt configurations } \longrightarrow { loops in RP³ }

We have seen the map

{ Belt configurations } \longrightarrow { loops in RP³ }

A deformation of belt configurations leads to a homotopy of the corresponding loops.

We have seen the map

{Belt configurations } \longrightarrow {loops in RP³ }

A deformation of belt configurations leads to a homotopy of the corresponding loops. Therefore we get an invariant :

{ Belt configurations } $\longrightarrow \pi_1(\mathbb{RP}^3, X)$

(x is some point of RP^3)

Recall $RP^3 \approx B_r / (v = -v)$ for some radius r.

Recall $RP^3 \approx B_r / (v = -v)$ for some radius r.

B

Recall $RP^3 \approx B_r / (v = -v)$ for some radius r. Any loop in RP^3 can be homotoped to miss an interior point of the ball. Such a loop can be expanded radially to homotope it to the boundary sphere (image in RP^3).

Recall $RP^3 \approx B' / (v = -v)$ for some radius r.

Any loop in \mathbb{RP}^3 can be homotoped to miss an interior point of the ball. Such a loop can be expanded radially to homotope it to the boundary sphere (image in \mathbb{RP}^3).

B

Recall $RP^3 \approx B_r / (v = -v)$ for some radius r.

Any loop in \mathbb{RP}^3 can be homotoped to miss an interior point of the ball. Such a loop can be expanded radially to homotope it to the boundary sphere (image in \mathbb{RP}^3).

52

B

Similarly any loop can be made to miss a point and such a loop can be homotoped to the equator. The image of the equator in RP^3 is of the form $S^1/(x=-x)$. The corresponding loop a in RP^3 is the boundary of a disc (image of the sphere). This shows that a is homotopic to constant.

The image of the equator in RP^3 is of the form $S^1/(x=-x)$. The corresponding loop a in RP^3 is the boundary of a disc (image of the sphere). This shows that a is homotopic to constant.

The image of the half circle in \mathbb{RP}^3 is a loop β as the end points map to the same point. This cannot be homotoped to a constant. Also note $a = \beta . \beta$.

The image of the equator in RP^3 is of the form $S^1/(x=-x)$. The corresponding loop a in RP^3 is the boundary of a disc (image of the sphere). This shows that a is homotopic to constant.

The image of the half circle in RP^3 is a loop β as the end points map to the same point. This cannot be homotoped to a constant. Also note $a = \beta . \beta$.

Therefore,

 $\pi_1(\mathbb{RP}^3, \mathbf{x}) \approx \mathbb{Z}_2$

(the group of integers modulo 2)

We have constructed an invariant :

```
{ Belt configurations } \longrightarrow \pi_1(RP^3, x)
```

We have constructed an invariant : { Belt configurations } $\longrightarrow \pi_1(RP^3, x)$ We can compute this to show

We have constructed an invariant : { Belt configurations } $\longrightarrow \pi_1(RP^3, x)$ We can compute this to show $\beta \in \pi_1(\mathbb{RP}^3, X)$

We have constructed an invariant : { Belt configurations } $\longrightarrow \pi_1(\mathbb{RP}^3, X)$ We can compute this to show β ε $π_1(RP^3, x)$ This is a non-trivial element.

$\beta.\beta = \alpha \in \pi_1(\mathbb{RP}^3, x)$

This is homotopically trivial.