The Belt Trick

Suppose that we keep top end of a belt fixed and rotate the bottom end in a circle around it.

Suppose that we keep top end of a belt fixed and rotate the bottom end in a circle around it.

We deform the twisted belt keeping the ends fixed

We deform the twisted belt keeping the ends fixed

We deform the twisted belt keeping the ends fixed

We deform the twisted belt keeping the ends fixed

Observe that the twisted belt cannot be untwisted by these transformations

Now rotate the bottom end one more time

Now rotate the bottom end one more time

Now rotate the bottom end one more time

Now rotate the bottom end one more time

Now rotate the bottom end one more time

Now rotate the bottom end one more time

Hence the twice rotated belt can be transformed to the untwisted belt while the once rotated belt cannot. This is called THE BELT TRICK

In order to understand the Belt trick one needs

 to consider the transformations.

In order to understand the Belt trick one needs

 to consider the transformations.

In order to understand the Belt trick one needs to consider the transformations.

One needs to construct an appropriate invariant.

Along the centre line of the belt consider two perpendicular vectors along the plane of the belt

Along the centre line of the belt consider two perpendicular vectors along the plane of the belt

Along the centre line of the belt consider two perpendicular vectors along the plane of the belt

> For every belt configuration we get an interval I $(=[0,1])$ of pairs of perpendicular vectors in space $\left(R^{3}\right)$ which vary continuously.

Along the centre line of the belt consider two perpendicular vectors along the plane of the belt

> For every belt configuration we get an interval $I(=[0,1])$ of pairs of perpendicular vectors in space $\left(R^{3}\right)$ which vary continuously. Hence one has a function:

Belt

configurations

Along the centre line of the belt consider two perpendicular vectors along the plane of the belt

> For every belt configuration we get an interval I (= [0,1]) of pairs of perpendicular vectors in space $\left(R^{3}\right)$ which vary continuously. Hence one has a function :

Belt
configurations

Maps from I to
\longrightarrow pairs of perpendicular vectors in R^{3} with same value at 0 and 1 .

Consider $V_{1}=\left\{\right.$ unit vectors in $\left.R^{3}\right\}$
$=S^{2}$ (the sphere)

Consider $V_{1}=\left\{\right.$ unit vectors in $\left.R^{3}\right\}$

Consider $V_{1}=\left\{\right.$ unit vectors in $\left.R^{3}\right\}$

Consider $V_{1}=\left\{\right.$ unit vectors in $\left.R^{3}\right\}$

Define:
$V_{2}=\left\{\right.$ pairs of perpendicular unit vectors in $\left.R^{3}\right\}$

$$
=\left\{(u, v) \in R^{3} \times R^{3}| | u|=1,|v|=1, u . v=0\}\right.
$$

Consider $V_{1}=\left\{\right.$ unit vectors in $\left.R^{3}\right\}$

Define:
$V_{2}=\left\{\right.$ pairs of perpendicular unit vectors in $\left.R^{3}\right\}$

$$
=\left\{(u, v) \in R^{3} \times R^{3}| | u|=1,|v|=1, u . v=0\}\right.
$$

This gets a topology as a subset of $R^{3} \times R^{3}$

Suppose $(u, v) \in V_{2}$. We can uniquely associate to it the vector $u \times v$ (cross product) to get an oriented three frame $\{u, v, u \times v\}$ (right-handed orientation)

Suppose $(u, v) \in V_{2}$. We can uniquely associate to it the vector $u \times v$ (cross product) to get an oriented three frame $\{u, v, u \times v\}$ (right-handed orientation)

Therefore, $\mathrm{V}_{2} \approx\{$ oriented three frames \}

Suppose $(u, v) \in V_{2}$. We can uniquely associate to it the vector $u \times v$ (cross product) to get an oriented three frame $\{u, v, u \times v\}$ (right-handed orientation)

Therefore, $V_{2} \approx\{$ oriented three frames $\}$

For each oriented three frame, form the matrix with the corresponding vectors as columns. This is an orthogonal matrix of determinant 1 . The set of these matrices is called SO(3).

Suppose $(u, v) \in V_{2}$. We can uniquely associate to it the vector $u \times v$ (cross product) to get an oriented three frame $\{u, v, u \times v\}$ (right-handed orientation)

Therefore, $V_{2} \approx\{$ oriented three frames $\}$

For each oriented three frame, form the matrix with the corresponding vectors as columns. This is an orthogonal matrix of determinant 1 . The set of these matrices is called SO(3).

$$
\text { Therefore, } V_{2} \approx S O(3) \text {. }
$$

Any orthogonal 2×2 matrix of determinant 1 is a rotation. This implies that $S O(2) \approx S^{1}$ (the circle).

Any orthogonal 2×2 matrix of determinant 1 is a rotation. This implies that $S O(2) \approx S^{1}$ (the circle).

Any orthogonal 3×3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Any orthogonal 2×2 matrix of determinant 1 is a rotation. This implies that $S O(2) \approx S^{1}$ (the circle).

Any orthogonal 3×3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Consider a ball of radius $\pi\left(B_{\pi}\right)$ in R^{3}

Any orthogonal 2×2 matrix of determinant 1 is a rotation. This implies that $S O(2) \approx S^{1}$ (the circle).

Any orthogonal 3×3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Consider a ball of radius $\pi\left(B_{\pi}\right)$ in R^{3}

Rotation by angle a in the plane normal to v
(note $\Phi(v)=-v$)

Any orthogonal 2×2 matrix of determinant 1 is a rotation. This implies that $S O(2) \approx S^{1}$ (the circle).

Any orthogonal 3×3 matrix of determinant 1 fixes a vector v (one can check that 1 is an eigenvalue).

Consider a ball of radius $\pi\left(B_{\pi}\right)$ in R^{3}

Therefore, $S O(3) \approx B_{\pi} /(v=-v) \approx R P^{3}$
(3-dim real projective space)

A belt configuration yields a map $\mathrm{v}: \mathrm{I} \rightarrow \mathrm{V}_{2}$ such that $\mathrm{v}(0)=\mathrm{v}(1)$. This is a loop in V_{2}.

A belt configuration yields a map v:I $\rightarrow V_{2}$ such that $\mathrm{v}(0)=\mathrm{v}(1)$. This is a loop in V_{2}.

Therefore,
$\{$ Belt configurations $\} \rightarrow\left\{\right.$ loops in V_{2} \}

A belt configuration yields a map v:I $\rightarrow V_{2}$ such that $\mathrm{v}(0)=\mathrm{v}(1)$. This is a loop in V_{2}.

Therefore,
$\{$ Belt configurations $\} \rightarrow\left\{\right.$ loops in V_{2} \}
II
\{ loops in SO(3) \}

A belt configuration yields a map v:I $\rightarrow V_{2}$ such that $\mathrm{v}(0)=\mathrm{v}(1)$. This is a loop in V_{2}.

Therefore,
\{Belt configurations \}
\{ loops in V_{2} \}

\{ loops in SO(3) \}

\{ loops in $R P^{3}$ \}

Suppose X is a topological space. A loop in X is a map $v: I \rightarrow X$ so that $v(0)=v(1)$.

Suppose X is a topological space. A loop in X is a map y : $I \rightarrow X$ so that $v(0)=v(1)$.

Suppose X is a topological space. A loop in X is a map $v: I \rightarrow X$ so that $v(0)=v(1)$.

Suppose X is a topological space. A loop in X is a map $v: I \rightarrow X$ so that $v(0)=v(1)$.

Two loops v and v^{\prime} are said to be homotopic ($\left(\sim \sim v^{\prime}\right.$) if there is a continuous deformation from v to v^{\prime}.

Suppose X is a topological space. A loop in X is a map $v: I \rightarrow X$ so that $v(0)=v(1)$.

$$
y \sim v^{\prime}
$$

Two loops v and γ^{\prime} are said to be homotopic $\left(\gamma \sim v^{\prime}\right)$ if there is a continuous deformation from v to v^{\prime}.

Suppose X is a topological space. A loop in X is a map $v: I \rightarrow X$ so that $v(0)=v(1)$.

$y \sim v^{\prime}$

$y \sim y^{\prime}$

Two loops v and v^{\prime} are said to be homotopic ($\left(\sim \sim v^{\prime}\right)$ if there is a continuous deformation from v to v^{\prime}.

Suppose X is a topological space. A loop in X is a map $\mathrm{v}: I \rightarrow X$ so that $\gamma(0)=\gamma(1)$.

$v^{\sim} \sim v^{\prime}$ but $v \not f^{\prime \prime}{ }^{\prime \prime}$

Two loops v and v^{\prime} are said to be homotopic ($\left(\sim \sim v^{\prime}\right.$) if there is a continuous deformation from v to v^{\prime}.

Suppose X is a topological space and X is a point of X.

Suppose X is a topological space and X is a point of X. Define :
$\pi_{1}(X, x)=\left\{\begin{array}{c}\text { loops starting and ending at } x \\ (\gamma(0)=\gamma(1)=x)\end{array}\right.$
(Homotopy fixing x)

Suppose X is a topological space and X is a point of X. Define :
$\pi_{1}(X, X)=\left\{\begin{array}{c}\text { loops starting and ending at } x \\ (v(0)=\gamma(1)=x)\end{array}\right.$
(Homotopy fixing x)
Elements of $\pi_{1}(X, X)$ can be multiplied :

Suppose X is a topological space and X is a point of X. Define :
$\pi_{1}(X, x)=\left\{\begin{array}{c}\text { loops starting and ending at } x \\ (v(0)=v(1)=x)\end{array}\right.$
(Homotopy fixing x)
Elements of $\pi_{1}(X, X)$ can be multiplied :

Suppose X is a topological space and X is a point of X. Define :
$\pi_{1}(X, x)=\left\{\begin{array}{c}\text { loops starting and ending at } x \\ (v(0)=v(1)=x)\end{array}\right.$

$$
(y(0)=\gamma(1)=x)
$$

(Homotopy fixing x)
Elements of $\pi_{1}(X, X)$ can be multiplied :

$a . b=$ the loop a followed by b

Suppose X is a topological space and X is a point of X. Define :
$\pi_{1}(X, x)=\left\{\begin{array}{c}\text { loops starting and ending at } x \\ (v(0)=v(1)=x)\end{array}\right.$

$$
(y(0)=\gamma(1)=x)
$$

(Homotopy fixing x)
Elements of $\pi_{1}(X, X)$ can be multiplied :

$a . b=$ the loop a followed by b

Suppose X is a topological space and X is a point of X. Define :

$$
\begin{aligned}
& \pi_{1}(X, x)=\left\{\begin{array}{c}
\text { loops starting and ending at } x \\
(v(0)=v(1)=x)
\end{array}\right. \\
& (\mathrm{r}(0)=\mathrm{y}(1)=x)
\end{aligned}
$$

(Homotopy fixing x)
Elements of $\pi_{1}(X, X)$ can be multiplied :

$a . b=$ the loop a followed by b
With this multiplication $\pi_{1}(X, X)$ becomes a group.

$X=$ the circle S^{1} and $x=$ any point in S^{1}

$X=$ the circle S^{1} and $X=$ any point in S^{1}

$X=$ the circle S^{1} and $x=$ any point in S^{1}

The loop a is homotopic to the circle thought of as a loop.

$$
X=\text { the circle } S^{1} \text { and } X=\text { any point in } S^{1}
$$

The loop a is homotopic to the circle thought of as a loop.

In fact, two loops are homotopic if and only if they wind around the circle the same number of times in the same direction.
$X=$ the circle S^{1} and $X=$ any point in S^{1}

The loop a is homotopic to the circle thought of as a loop.

In fact, two loops are homotopic if and only if they wind around the circle the same number of times in the same direction. This demonstrates:

$$
\pi_{1}\left(S^{1}, x\right)=Z \text { (the group of integers) }
$$

We have seen the map
$\{$ Belt configurations $\} \longrightarrow\left\{\right.$ loops in $\left.R P^{3}\right\}$

We have seen the map
$\{$ Belt configurations $\} \longrightarrow\left\{\right.$ loops in $\left.R P^{3}\right\}$
A deformation of belt configurations leads to a homotopy of the corresponding loops.

We have seen the map
$\{$ Belt configurations $\} \longrightarrow\left\{\right.$ loops in $\left.R P^{3}\right\}$
A deformation of belt configurations leads to a homotopy of the corresponding loops. Therefore we get an invariant :
$\left\{\right.$ Belt configurations \}$\longrightarrow \pi_{1}\left(R P^{3}, x\right)$
(x is some point of $R P^{3}$)

Recall $R P^{3} \approx B_{r} /(v=-v)$ for some radius r.

Recall $R P^{3} \approx B_{r} /(v=-v)$ for some radius r.

Recall $R P^{3} \approx B_{r} /(v=-v)$ for some radius r.
Any loop in $R P^{3}$ can be homotoped to miss an interior point of the ball. Such a loop can be expanded radially to homotope it to the boundary sphere (image in $R P^{3}$).

Recall $R P^{3} \approx B_{r} /(v=-v)$ for some radius r.

Recall $R P^{3} \approx B_{r} /(v=-v)$ for some radius r.
Any loop in RP ${ }^{3}$ can be homotoped to miss an interior point of the ball. Such a loop can be expanded radially to homotope it to the boundary sphere (image in $R P^{3}$).

Similarly any loop can be made to miss a point and such a loop can be homotoped to the equator.

The image of the equator in $R P^{3}$ is of the form $S^{1} /(x=-x)$. The corresponding loop a in $R P^{3}$ is the boundary of a disc (image of the sphere). This shows that a is homotopic to constant.

The image of the equator in $R P^{3}$ is of the form $S^{1} /(x=-x)$. The corresponding loop a in $R P^{3}$ is the boundary of a disc (image of the sphere). This shows that a is homotopic to constant.

The image of the half circle in $R P^{3}$ is a loop β as the end points map to the same point. This cannot be homotoped to a constant. Also note $\alpha=\beta . \beta$.

The image of the equator in $R P^{3}$ is of the form $S^{1} /(x=-x)$. The corresponding loop a in $R P^{3}$ is the boundary of a disc (image of the sphere). This shows that a is homotopic to constant.

The image of the half circle in $R P^{3}$ is a loop β as the end points map to the same point. This cannot be homotoped to a constant. Also note $\alpha=\beta . \beta$.

Therefore, $\quad \pi_{1}\left(R P^{3}, x\right) \approx Z_{2}$
(the group of integers modulo 2)

We have constructed an invariant :

$\left\{\right.$ Belt configurations \}$\longrightarrow \pi_{1}\left(R P^{3}, x\right)$

We have constructed an invariant :
$\left\{\right.$ Belt configurations \}$\longrightarrow \pi_{1}\left(R P^{3}, x\right)$
We can compute this to show

We have constructed an invariant :
$\left\{\right.$ Belt configurations \}$\longrightarrow \pi_{1}\left(R P^{3}, x\right)$
We can compute this to show

$$
\beta \in \pi_{1}\left(R P^{3}, x\right)
$$

We have constructed an invariant :
$\{$ Belt configurations $\} \longrightarrow \pi_{1}\left(R^{3}, x\right)$
We can compute this to show

$\beta \in \pi^{\left(R P^{3}, x\right)}$
This is a non-trivial element.

景

$$
\beta \cdot \beta=\alpha \in \pi_{1}\left(R P^{3}, x\right)
$$

