1. PREREQUISITES

1.1. Nets. A directed set is a preordered (reflexive: a < a, transitive: a < b =<
¢ = a = c¢ set P such that for any two elements a,b € P,dc € P such that
a =X ¢,b = ¢c. A net in a topological space X is a map = : P — X where P
is a directed set. Nets are often denoted as {zq}acp. A net {z,} converges to
xz € X if given any open neighborhood U of x there exists «g such that for all
ap 2,4 € U. Anet {z,} in a metric space (X, d) is called Cauchy if Ve > 0, Jay
such that d(x.,zs) < € whenever «, 8 = ap.

Proposition 1.1. Let X be a topological space and U C X. Then x € U iff there

exists a net xo, in U converging to x.

Proof. Let z, be a net converging to x. Then given any open neighborhood of x
it will contain some z, and hence an element from U. Thus x is contained in the
closure of U. Conversely suppose « is an element from closure of U. Let P be the
directed set consisting of open neighborhoods of x. Define U; < U, if Uy C Us.
Since x lies in the closure of U every neighborhood V of x will contain an element
of U say zy. This defines a net converging to z. O

Proposition 1.2. In a complete metric space (X,d) every Cauchy net converges.
Proof. Exercise. Il

1.2. Sums. Let X be a set and a : X — C be a function. We want to attach a
meaning to )y a(x). Consider the set D of finite subsets of X. Given two such
finite subsets a, 8 of X we define a <X B if o C B. With this order D becomes
a(z).If this

net converges we say that the sum ) _ a(z) is meaningful and } _ya(z) =

a directed set. Now consider the net {aq}aep, Where an = > .,

limyep g

Proposition 1.3. Let a : X — C be such that ) .y a(x) makes sense. Then
Supp(a) = {x € X : a(x) # 0} is countable, and if we fix a one to one and onto
map ¢ : N = Supp(a), then Y2, [a(6(n))] < 00 and ¥, o a(z) = X2, a(é(n)).
Note that this sum does not depend on the map ¢.

Proof. Let limyepa, = A, that means given € > 0 there exists «g such that

whenever we have a finite subset o of X such that
(1.1) a2 ag,lag — A <e.

Let X,, = {z € X : R(a(x)) > 1/n}, then X,, must be finite. Because otherwise,
if we take a subset oy of X,, of size kn, then R(aq,) > k. Let B; = ar U oy, then
R(ag,) = R(aa,) + R(aa,) > k + R(A) —e. On the other hand by 1.1, R(ag,) <
R(A) + ¢, a contradiction. Similarly one shows that {z € X : R(a(z)) < —1/n} is
finite. Thus we get {z € X : [R(a(z)| > 1/n} is finite. Exactly along the same lines

one shows that {z € X : |S(a(z))| > 1/n} is finite. O
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Remark 1.4. Note that there is nothing special about the Banach space C, if E is

a Banach space and a : X — E is a function we can similarly define )y a(x)



