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1. Hilbert Spaces

Notation: K stands for R or C.

Definition 1.1. Let H be a vector space. A pre-inner product on H is a sesquilinear

map 〈·, ·〉 : H×H → K such that

(1) 〈u, v〉 = 〈v, u〉,∀u, v ∈ H.

(2) 〈u, αv + βw〉 = α〈u, v〉+ β〈u,w〉,∀α, β ∈ K,∀u, v ∈ H.

(3) 〈u, u〉 ≥ 0 ∀u ∈ H.

Definition 1.2. A Pre-Hilbert Space or a pre-inner product space is a pair

consisting of vector space along with a pre-inner product.

Proposition 1.3 (Cauchy-Schwarz Inequality). Let H be a vector space equipped

with a pre-inner product, then

| < u, v > | ≤
√
〈u, u〉

√
〈v, v〉,∀u, v ∈ H.

Proof. Let 〈u, v〉 = reiθ, r ≥ 0. Note that if the scalar field is R then θ ∈ {π, 0}.
We will divide the proof in cases. The first one is〈u, u〉 = 〈v, v〉 = 0.

0 ≤ 〈u− e−iθv, u− e−iθv〉

= 〈u, u〉+ 〈v, v〉 − e−iθ〈u, v〉 − eiθ〈v, u〉

= −2r ≤ 0.

Thus we get r = 0 proving the inequality in this case. Next case is both 〈u, u〉 and

〈v, v〉 are not simultaneously zero. Without loss of generality we can assume that

〈v, v〉 6= 0. Let t = − 〈u,v〉√
〈v,v〉

, then,

0 ≤ 〈u+ tv, u+ tv〉

= 〈u, u〉+ |t|2〈v, v〉 − 2|〈u, v〉|2

〈v, v〉

= 〈u, u〉+
|〈u, v〉|2

〈v, v〉
− 2|〈u, v〉|2

〈v, v〉

= 〈u, u〉 − |〈u, v〉|
2

〈v, v〉
.
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Now transferring |〈u,v〉|
2

〈v,v〉 to the other side and multiplying both sides by 〈v, v〉 we

get the result. �

Corollary 1.4. We have 〈u, v〉 = 0 whenever 〈v, v〉 = 0.

Corollary 1.5. N = {v ∈ H : 〈v, v〉 = 0} is a subspace.

Proof. Clearly N is closed under scalar multiplication. Only thing we need to show

that it is closed under addition. Let u, v ∈ N . Then by the C-S inequality we get

〈u, v〉 = 0. Thus 〈u+ v, u+ v〉 = 0. �

Corollary 1.6.
√
〈u, u〉 = supv:〈v,v〉=1 |〈u, v〉|

Proof. If 〈u, u〉 = 0 then both sides are zero. Otherwise by the C-S inequality left

hand side is less than or equal to right hand side and taking v = u/
√
〈u, u〉 we get

the other inequality. �

Definition 1.7. Let H be a vector space. An inner product on H is a sesquilinear

map 〈·, ·〉 : H×H → K such that

(1) 〈·, ·〉 is a pre-inner product.

(2) Positive definiteness: 〈u, u〉 = 0 =⇒ u = 0.

An inner product space (H, 〈·, ·〉) is a pair consisting of a vector space H along with

an inner product on H

Definition/Proposition 1.8. Let (H, 〈·, ·〉) be an inner product space, then the

map ‖ · ‖ : H → R+ given by

‖v‖ =


√
〈v, v〉, v 6= 0

0, for v = 0.

is a norm on H. This norm is referred as the norm associated with the inner

product 〈·, ·〉.

Proof. Let u, v ∈ H. Only thing we need to verify is ‖u + v‖ ≤ ‖u‖ + ‖v‖. That

follows from,

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + ‖v‖2 + 2<(〈u, v〉)

≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2

�

Definition 1.9. An inner product space (H, 〈·, ·〉) is called a Hilbert space if H
is complete with respect to the norm associated with the inner product.

Definition 1.10. Let H1,H2 be Hilbert spaces. A linear map U : H1 → H2

is called unitary if it is one-to-one, onto and preserves inner products that is,

〈Ux,Uy〉 = 〈x, y〉, for all x, y ∈ H1. The Hilbert spaces H1,H2 are called unitarily

equivalent if there is a unitary U from H1 to H2.
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Proposition 1.11. Let H1,H2 be Hilbert spaces with dense subspaces S1, S2 re-

spectively. Let U : S1 → S2 be a bijection such that 〈Ux,Uy〉 = 〈x, y〉, for all

x, y ∈ S1, then U extends to a unitary map denoted by the same symbol U from H1

to H2.

Proof. Observe that ‖U(x)‖ = ‖x‖, for all x ∈ S1. Therefore U converts Cauchy

sequences to Cauchy sequences. If x is an element in H1 there is a sequence {xn}
of elements of S1 converging to x. Now {U(xn)} is also Cauchy and therefore

converges to some limit. Define Ux as this limit. Clearly this is well defined. By

playing the same game with U−1 we conclude that the extended map is bijective

as well. Continuity of the innerproduct combined with the density of Si’s give

〈Ux,Uy〉 = 〈x, y〉, for all x, y ∈ H1. �

Definition/Proposition 1.12. Let (Hpre, (·, ·)) be a pre-Hilbert space. Let N =

{v ∈ Hpre : (v, v) = 0}. Then 〈u+N, v +N〉 = (u, v) defines an inner product on

Hpre/N . Completion of Hpre/N with respect to the associated norm is called the

Hilbert space associated with the pre-Hilbert space Hpre.

Proof. By corollary (1.4) the sesquilinear form 〈·, ·〉 is well defined. Only thing we

need to verify is positive definiteness. Let u ∈ Hpre be such that 〈u+N, u+N〉 =

(u, u) = 0. Then u ∈ N and consequently u+N = N . �

Example 1.13. Let X be a set. Let `2,f (X) be the space of K valued functions

on X with finite support. Consider the sesquilinear form on `2,f (X) given by,

〈f, g〉 =
∑
x∈X f(x)g(x). Note that the sum is finite because both f and g have finite

support. The Hilbert space associated with the pre-Hilbert space (`2,f (X), 〈·, ·〉) is

denoted by `2(X).

Proposition 1.14. Let X be a set. Then {f : X → K :
∑
x∈X |f(x)|2 < ∞}

the space of square summable functions is a Hilbert space with the inner product

〈f, g〉 =
∑
x∈X f(x)g(x). This Hilbert space is unitarily equivalent with `2(X).

Proof. It is immediate that the sesquilinear form 〈·, ·〉 is an inner product. We

only need to verify the completeness. Let {fn} be a Cauchy sequence. Then by

proposition (4.3) we know that I = ∪nSupp(fn) is countable. Now using the

completeness of l2 we conclude that {fn} converges.

Let S = {f : X → K : Supp(f) is finite}. It follows from proposition (4.3) that

S is dense in the space of square summable functions. The obvious identification

between S and `2,f (X) preserves inner products and they are dense in their ambient

spaces. Therefore we are done by proposition (1.11). �

Theorem 1.15 (Riesz Representation Theorem). Let φ ∈ `2(X)
∗
, then ∃!ψ ∈

`2(X) with ‖φ‖ = ‖ψ‖ such that φ(f) = 〈ψ, f〉. The map φ 7→ ψ is a conjugate

linear isometry from `2(X)
∗

to `2(X)
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Proof. Without loss of generality assume that ‖φ‖ = 1. Let ex ∈ `2(X) be given by

ex(y) = δxy, where δ is the Kronecker delta. Then clearly ‖ex‖ = 1 and 〈ex, ey〉 =

δxy. Now define ψ : X → K as ψ(x) = φ(ex). Given a finite set F ⊆ X define,

ψF =
∑
x∈F ψ(x)ex. Then,

(1) ‖ψF ‖2 =
∑
x∈F |ψ(x)|2.

(2) φ(ψF ) =
∑
x∈F |ψ(x)|2 = ‖ψF ‖2.

(3) ‖ψF ‖2 = |φ(ψF )| ≤ ‖φ‖‖ψF ‖, thus ‖ψF ‖ ≤ 1.

As F was arbitrary it follows that ψ ∈ `2(X). By Cauchy-Schwarz inequality ψ

induces a bounded linear functional ψ̃ on `2(X) given by ψ̃ : f 7→ 〈ψ, f〉. Then

ψ̃(ex) = ψ(x) = φ(ex) and consequently both ψ̃, φ agree on the span{ex : x ∈ X}.
But this is dense in `2(X), hence

φ(f) = ψ̃(f) = 〈ψ, f〉.

Uniqueness of ψ follows from the positive definiteness of the inner product. Only

thing remaining is, ‖ψ̃‖ = ‖ψ‖. By Cauchy-Schwarz inequality we have ‖ψ̃‖ ≤ ‖ψ‖.
While the other inequality follows from |ψ̃(ψ)| = ‖ψ‖2. �

Definition 1.16. Let H be a Hilbert space. A subset A ⊆ H is called orthogonal

if x, y ∈ A, x 6= y satisfies 〈x, y〉 = 0. An orthogonal set A is called orthonormal

if every x ∈ A has norm one. An orthonormal basis (o.n.b) is an orthonormal set

whose span is dense in H.

Proposition 1.17. Let A be an orthonormal set and f : A → K be a function

such that
∑
α∈A |f(α)|2 <∞, then the net {

∑
α∈F f(α)α}F over the directed set of

finite subsets of A converges and its limit is denoted by
∑
α∈A f(α)α. Moreover,

‖
∑
α∈A

f(α)α‖
2

=
∑
α∈A
|f(α)|2.(1.1)

Proof. Note that for a finite set F ⊆ A,

‖
∑
α∈F

f(α)α‖
2

=
∑
α∈F
|f(α)|2.(1.2)

By proposition (4.2) it is enough to show that {
∑
α∈F f(α)α}F is a Cauchy net.

That follows once we show that

∀ε > 0,∃F0 such that
∑
α∈F
|f(α)|2 < ε whenever F ∩ F0 = ∅.

Using the orthonormality of A we get that if F ⊆ A is a finite set with F ∩ F0 = ∅
then

‖
∑
α∈F

f(α)α‖
2

=
∑
α∈F
|f(α)|2 < ε.

That is to say that {
∑
α∈F f(α)α}F converges. The equality (1.1) follows from the

continuity of norm and the equality (1.2). �
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Proposition 1.18. Let A be an orthonormal set in a Hilbert space H and v ∈ H.

Then the sum
∑
α∈A 〈α, v〉α converges. If we call the limit w then ‖w‖ ≤ ‖v‖ and

〈v − w,α〉 = 0 for all α ∈ A.

Proof. Let F ⊆ A be a finite subset. Then, {v−
∑
α∈F 〈α, v〉α}∪F is an orthogonal

set and v = (v −
∑
α∈F 〈α, v〉α) +

∑
α∈F 〈α, v〉α. Thus,

‖v‖2 =
∑
α∈F
|〈α, v〉|2 + ‖v −

∑
α∈F
〈α, v〉α‖

2
.(1.3)

Therefore,

sup
F

∑
α∈F
|〈α, v〉|2 ≤ ‖v‖2.(1.4)

Proposition (1.17) allows us to conclude that the sum
∑
α∈A 〈α, v〉α converges. Let

w be the limit. Continuity of norm along with (1.4) gives ‖w‖ ≤ ‖v‖.
Let α′ ∈ A. By CS-inequality we know that inner product is a continuous map.

Therefore

〈v − w,α′〉 = lim
F
〈v −

∑
α∈A
〈α, v〉α, α′〉 = 0,

because 〈v −
∑
α∈A 〈α, v〉α, α′〉 = 0 whenever α′ ∈ F . �

Definition 1.19 (Gram-Schmidt Orthogonalization). Let F be a finite orthonormal

set in a Hilbert space H and v ∈ H \ Span{u : u ∈ F}. Then

GS(v;F ) = {v −
∑
α∈F
〈α, v〉α} ∪ F

is an orthogonal set called the result of applying Gram-Schmidt orthogonalization

to the pair(v;F ).

Definition 1.20. Let µ be a finite measure on R such that
∫
|x|ndµ(x) <∞,∀n ≥

0. Then consider the Hilbert space L2(R, µ) and successively define polynomials Pn
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as follows,

p0(x) = 1

P0 =
p0

‖p0‖2

p1(x) = x− (

∫
R
yP0(y)dµ(y))P0(x)

P1 =
p1

‖p1‖2
· · · · ·

pn(x) = xn −
n−1∑
j=0

(

∫
R
ynPj(y)dµ(y))Pj(x)

Pn =
pn
‖pn‖2

· · · · ·

These polynomials are called orthogonal polynomials with respect to the measure µ.

Corollary 1.21. In the notation of proposition (1.18),

‖v‖2 = ‖w‖2 + ‖v − w‖2.

Proof. Note that w belongs to the closed span of A. The continuity of the inner

product gives 〈v − w,w〉 = 0 which in turn gives the result. �

Corollary 1.22 (Abstract Fourier Expansion/ Parseval relations). Let A be an

o.n.b, then every v, v′ ∈ H satisfies,

v =
∑
α∈A
〈α, v〉α.(1.5)

〈v′, v〉 =
∑
α∈A
〈v′, α〉 · 〈α, v〉(1.6)

The expansion (1.5) is called the abstract Fourier expansion with respect to the basis

A.

Proof. Let w =
∑
α∈A 〈α, v〉α, then by proposition (1.18) 〈v − w,α〉 = 0 for every

α from the span of A. But span of A is dense in H, thus 〈v − w, v′〉 = 0 for all

v′ ∈ H. Taking v′ = v − w we get v = w.

To see (1.6) observe that by the continuity of the inner product we have

〈v′, v〉 = lim
F
〈
∑
α∈F
〈α, v′〉α,

∑
α∈F
〈α, v〉α〉

= lim
F

∑
α∈F
〈v′, α〉 · 〈α, v〉

=
∑
α∈A
〈v′, α〉 · 〈α, v〉.
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�

Proposition 1.23. Every orthonormal set in a Hilbert space can be extended to

an orthonormal basis.

Proof. Let B be an orthonormal set. Consider the partially ordered set

P = {A ⊆ H : A is an orthonormal set that containsB}

ordered by inclusion. By Zorn’s lemma obtain a maximal element, say A. We

wish to show that A is an o.n.b. If it is not, then there exists a v ∈ H \ SpanA.

Let w =
∑
α∈A 〈α, v〉α, then ‖v − w‖ 6= 0 because otherwise v(= w) becomes an

element of the closed span of A. By proposition (1.18) { (v−w)
‖v−w‖} ∪ A becomes an

orthonormal set containing A. This contradicts the maximality of A. �

Corollary 1.24 (Projection Theorem). Let H′ ⊆ H be a closed subspace. Let

v ∈ H, then there exists unique w ∈ H′ such that

‖v − w‖ = min{‖v − x‖ : x ∈ H′}.

The association v 7→ w defines a linear map P : H → H such that P 2 = P , range of

P is H′ and 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ H. The map P is called the orthogonal

projection onto H′.

Proof. Let A′ be an o.n.b of H′. Extend it to A, an o.n.b for H. Let v ∈ H. Let

v ∈ H. Then by corollary (1.22), v =
∑
α∈A〈α, v〉α. Let x ∈ H′, then again by

corollary (1.22) we get x =
∑
α∈A′〈α, v〉α. Proposition (1.17) gives,

‖v − x‖2 = ‖
∑
α∈A
〈α, v〉α−

∑
α∈A′
〈α, x〉α‖

2

=
∑

α∈A\A′
|〈α, v〉|2 +

∑
α∈A′

|〈α, v〉 − 〈α, x〉|2

≥
∑

α∈A\A′
|〈α, v〉|2.

The last inequality becomes a equality iff 〈α, v〉 = 〈x, α〉,∀α ∈ A′. That is to say

that the minimization problem is solved by w =
∑
α∈A′〈α, v〉α. This expression

also shows that P is a linear map and P 2 = P . Let x, y ∈ H, then

〈Px, y〉 = 〈
∑
α∈A′
〈α, x〉α, y〉

=
∑
α∈A′
〈x, α〉〈α, y〉

= 〈x
∑
α∈A′
〈α, y〉α〉

= 〈x, Py〉.
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�

Corollary 1.25 (Corollary to Projection Theorem). Let H1 ⊆ H be a closed sub-

space. Then

H⊥1 := {u ∈ H : 〈u, v〉 = 0,∀v ∈ H1}
is a closed subspace called the orthocomplement of H1 and H = H1 ⊕H⊥1 .

Proof. The orthocomplement is closed because if un ∈ H⊥1 and ‖un−u‖ → 0, then

given any v ∈ H1 using the continuity of the innerproduct (a consequence of the

Cauchy-Schwarz inequality) we get

〈u, v〉 = lim
n→∞

〈un, v〉 = 0.

We only need to show that H = H1⊕H⊥1 . Let P be the orthogonal projection onto

H1. Then H1 = {v ∈ H : Pv = v}. Let u ∈ H, v = P (u) ∈ H1. Then given any

w = P (w) ∈ H1,

〈u− P (u), w〉 = 〈(I − P )(u), P (w)〉, where I : u 7→ u,

= 〈P (I − P )(u), w〉

= 〈(P − P )(u), P (w)〉, [ since P = P 2]

= 0.

Therefore u− P (u) ∈ H⊥1 . Thus u = P (u) + (u− P (u)) ∈ H1 ⊕H⊥1 . �

Corollary 1.26. Let A be an o.n.b in a Hilbert space H. There is a unitary

U : H → `2(A).

Proof. Recall that by proposition (1.14),

`2(A) ∼= {f |f : A→ K,
∑
α∈A
|f(α)|2 <∞}.

Define U(v) : A → K as U(v)(α) = 〈α, v〉, then corollary (1.22) shows that U is

an inner product preserving map. Proposition (1.17) shows that U is onto, hence

a unitary. �

Corollary 1.27 (Riesz Representation Theorem). Let φ ∈ H∗, then ∃!ψ ∈ H with

‖φ‖ = ‖ψ‖ such that φ(f) = 〈ψ, f〉. The map φ 7→ ψ is a conjugate linear isometry

from H∗ to H

Proof. Let A be an o.n.b and U : `2(A)→ H be the unitary defined in the previous

corollary. Let φ′ ∈ `2(A)
∗

be the functional v 7→ φ(U(v)). Then by theorem (1.15)

we can obtain ψ′ ∈ `2(A) such that φ(U(v)) = φ′(v) = 〈ψ′, v〉. Let ψ = Uψ′. Then,

φ(v) = φ(U(U−1v) = 〈ψ′, U−1(v)〉 = 〈ψ, v〉.

Also ‖ψ‖ = ‖ψ′‖ = ‖φ′‖ = ‖φ‖. �
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Exercise 1.28. A bounded linear map U on a Hilbert space is a unitary iff U∗U =

UU∗ = I, where I stands for the identity operator.

Proposition 1.29. Any two o.n.b have same cardinality.

Proof. Let H be a Hilbert space with two orthonormal basis A,B. We will prove

the proposition in the infinite dimensional case only. Fix a countable dense subset

K′ of K. Let,

HA = {v ∈ H|{a ∈ A : 〈v, a〉 6= 0} is finite and 〈v, a〉 ∈ K′,∀a ∈ A}

Then HA is dense in H and is in bijection with ∪∞n=1A
n×K′n which is in bijection

with A. Define f : B → HA, such that ‖b− f(b)‖ < 1/8, for all b ∈ B. Orthonor-

mality of B implies ‖b−b′‖ > 1 whenever we have two distinct elements of B. Thus

given any two distinct elements b, b′ ∈ B we have ‖f(b)− f(b′)‖ > 1/2. That is to

say that f is one to one. This shows that the cardinality of A is greater than or

equal to that of B. By symmetry we get the other inequality and conclude both A

and B have the same cardinality. �

Proposition 1.30. Let H be a separable Hilbert space. Then any o.n.b is countable.

Proof. Fix a countable dense set S. Let A be an o.n.b. Define a function f : A→ S

such that ‖f(α)− α‖ < 1/2. Then f is one to one because, given any two distinct

α, α′ of A, we have

‖f(α)− f(α′)‖ ≥ ‖α− α′‖ − ‖f(α)− α‖ − ‖f(α′)− α′‖ > 1− 1/2− 1/2 = 0.

This shows that A is countable. �

2. A Typical Business in Hilbert Space Theory

In this section and the rest of this chapter we will assume our ground field is C.

We have seen that Hilbert spaces are classified by a cardinal namely that of an onb.

This may give the impression that this ends the theory of Hilbert spaces. But that

is not the case because Hilbert spaces often come equipped with extra structures

like representations of other algebraic structures and one often looks for unitary

equivalences that respect these structures. Now we will illustrate this with the first

and simplest such result. None the less we will see that this result has significant

applications. Let us start with the simplest locally compact abelian group, namely

Z. Every locally compact abelian group G determines another such group denoted

by Ĝ as follows.

Ĝ = {ξ|ξ : G→ T is a group homomrphism },

where T is the unit circle. A homomorphism from G to T is called a character on

G. Thus Ĝ is the space of characters. The group operations of Ĝ are defined as

ξ−1(g) = ξ(g)
−1

and (ξ1 ·ξ2)(g) = ξ1(g)ξ2(g). The group Ĝ is called the Pontryagin
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dual of G. Give Ĝ the topology of uniform convergence on compact sets. We will

prove later that with this topology Ĝ becomes a locally compact topological group.

Since a group homomorphism from Z is specified by its action on the generator we

can identify Ẑ as a set with T itself. It is also easy to see that the way we defined

the topology on Ĝ, the resulting topology on T is the usual topology. We will

identify it with the quotient space R/Z. Thus we will parametrize points on the

circle by {e2πiθ : θ ∈ [0, 1]}. By its translation invariance Lebesgue measure induces

a measure on T. This measure will be denoted by dθ. The Borel sigma algebra on T
is countably generated hence L2(T) is separable. We know that any two separable

Hilbert spaces have countable o.n.b, hence they are unitarily equivalent. Thus

L2(T) is equivalent with `2(Z). But the question is, are their “better unitaries”.

So, what do we mean by a “better” unitary. We need to work a little to make

sense of this. Observe that given a Hilbert space H, unitary operators on H,

denoted by U(H) is a group. We have a group homomorphism U : Z → U(`2(Z))

given by U(n)ξ : m 7→ ξ(m − n). Using this map we can produce a map from

πZ : `1(Z)→ B(`2(Z)) as follows,

πZ(f) =
∑

f(n)U(n), where f ∈ `1(Z).

Note that

‖πZ(f)‖ ≤
∑
|f(n)|‖U(n)‖ = ‖f‖1.(2.7)

We know that `1(Z) is a Banach Space, has it got some more algebraic structure?

Yes, it is an algebra (The words algebra and ring are synonymous, even though the

former is preferred by analysts.) provided we define the product of f, g ∈ `1(Z) as

(f ? g)(k) =
∑
n

f(n)g(k − n).

Of course we need to verify that the sequence {(f ? g)(k)} ∈ `1(Z) and that follows

from,∑
k

|(f ? g)(k)| =
∑
k

|
∑
n

f(n)g(k − n)|

≤
∑
k

∑
n

|f(n)||g(k − n)|

=
∑
n

∑
k

|f(n)||g(k − n)|, (Tonneli in action here),

≤ ‖f‖1‖g‖1.

We have not only shown that (f ? g) ∈ `1(Z), we have also shown that ‖f ? g‖1 ≤
‖f‖1‖g‖1. In other words we have shown that `1(Z) is a Banach Algebra. Since we

have already used the term we may as well define this concept formally.

Definition 2.1. A Banach algebra A is a Banach space along with an algebra/

ring structure such that ‖a · b‖ ≤ ‖a‖ · ‖b‖,∀a, b ∈ A.
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There is nothing special about Z. The same argument goes verbatim in general.

Definition 2.2. Let G be a locally compact group. A measure λ on G is called

left(right) invariant if λ(g.B) = λ(B)(λ(B.g) = λ(B)) for each Borel subset B of

G. This is equivalent with

∫
G

f(g · h)dλ(h) =

∫
G

f(h)dλ(h),∀f ∈ L1(G,λ).(2.8)

Theorem 2.3. Let G be a locally compact Hausdorff topological group. Then G

admits a left (right) invariant measure λ and it is unique upto scaling by a positive

real number. Such a measure is called a left (right) Haar measure. If we just say

Haar measure we mean left Haar measure.

We will not prove this in this generality. For a compact second countable group

we will establish this later.

Proposition 2.4. Let G be a locally compact group and λ be a Haar measure on

G. Then A = L1(G,λ) is a Banach algebra with multiplication defined by

(f1 ? f2) =

∫
f1(g)f2(g−1h)dλ(g).

This multiplication is called Convolution.

Proposition 2.5. Convolution is associative.

Proof. (1) f1 ? f2 ∈ L1:

∫
|f1 ? f2(h)dλ(h) ≤

∫ ∫
|f1(g)||f2(g−1h|dλ(g)dλ(h)

=

∫
|f1(g)|dλ(g)

∫
|f2(h)|dλ(h)

= ‖f1‖1‖f2‖1

Therefore we have proved

f1 ? f2 ∈ L1(G)and

‖f1 ? f2‖1 ≤ ‖f1‖1‖f2‖1
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(2) (f1 ? f2) ? f3 = f1 ? (f2 ? f3) :

(f1 ? f2) ? f3(u) =

∫
(f1 ? f2)(v)f3(v−1udv

=

∫ ∫
f1(w)f2(w−1v)f3(v−1u)dwdv

=

∫ ∫
f1(w)f2(v)f3(v−1w−1u)dwdv

= f1 ? (f2 ? f3)(u)

�

The space Ĝ determines another Banach algebra Cb(Ĝ) provided we define prod-

uct of two functions as their pointwise product. Of course in the present case

Ĝ itself is compact, hence Cb(Ĝ) = C(Ĝ). We have an obvious homomorphism

π̃Ĝ : Cb(Ĝ)→ U(L2(Ĝ)) given by π̃Ĝ(f)ξ = f · ξ where f · ξ is the square integrable

function on Ĝ, x 7→ f(x)ξ(x). The obvious inequality∫
Ĝ

|f · ξ|2d(Haar) ≤ sup
x∈Ĝ
|f(x)|

∫
Ĝ

|ξ|2d(Haar),

shows that

‖π̃Ĝ(f)‖ ≤ ‖f‖.(2.9)

Thus π̃Ĝ is a Banach algebra homomorphism. The final ingredient is a transform,

probably the most celebrated with in the whole of Mathematics called Fourier

transform. This is a homomorphism FZ : `1(Z) → C(T), given by F(f)(e2πiθ) =∑
n f(n)e−2πinθ. Absolute summability of the sequence {f(n)} ensures uniform

convergence of the right hand side. In the general case of a locally compact abelian

group G, the Fourier transform FG : L1(G)→ Cb(Ĝ) is defined as

FG(f)(ξ) =

∫
G

ξ(g−1)f(g)dg.(2.10)

‖FG(f)‖ = sup
ξ∈Ĝ
|FG(f)| ≤

∫
G

|ξ(g−1)f(g)|dg = ‖f‖1(2.11)

Of course we need to establish that the right hand side defines a bounded continuous

function. In fact more is true, Fourier transform actually lands in the space of

continuous functions vanishing at infinity. This is often referred as the Riemann-

Lebesgue lemma and will be taken up during our discussion of Banach algebras.

At this moment we will just show that it defines a bounded continuous function.

However Ẑ itself being compact C(Ẑ) coincides with C0(Ẑ).

Proposition 2.6. Let f ∈ L1(G), then F(f) ∈ Cb(Ĝ).
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Proof. Let C be a Borel subset of G contained in a compact set K. The indicator

function of C denoted by 1C is defined as

1C(x) =

1 if x ∈ C

0 otherwise.

Then we have the following

(1) The span of {1C : C contained in a compact set } is dense in L1(G).

(2) For such a C, by an easy application of the dominated convergence theorem

FG(1C) is a continuous function.

(3) The estimate ‖FG(f)‖ ≤ ‖f‖1 shows that for an arbitrary f , FG(f) is a

uniform limit of a sequence of bounded continuous functions. Hence FG(f)

is bounded and continuous.

�

Proposition 2.7. Fourier transform is a homomorphism.

Proof. Let f1, f2 ∈ L1(G). Then,

FG(f1 ? f2)(ξ) =

∫
G

ξ(g)(f1 ? f2)(g)dg

=

∫
G

∫
G

ξ(h)ξ(h−1g)f1(h)f2(h−1g)dhdg

= FG(f1)(ξ)FG(f2)(ξ).

Thus

FG(f1 ? f2) = FG(f1) · FG(f2)

�

Now we can state what do we mean by a “good” unitary from `2(Z) to L2(T).

A unitary U : `2(Z) → L2(T) is called “good” if given any element f of `1(Z), we

have

UπZ(f) = π̃T(FZ(f))U.(2.12)

This is also expressed by saying that U intertwines the representations πZ and

π̃T ◦ FZ.

Theorem 2.8. The Fourier transform FZ extends to a “good” unitary.

Proof. Let δn ∈ `1(Z) be the map

δn(k) =

1 if k = n

0 otherwise.

Let c00 be the span of δn’s for n ∈ Z. Note that these δn’s can also be considered

as elements of `2(Z) and strictly speaking when considered as elements of `2(Z)
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one should use different symbols for them. But we won’t do that and use the same

symbol. Also consider the maps zn ∈ C(T) given by e2πiθ 7→ e2πinθ. The span of

{zn : n ∈ Z} is called the space of trigonametric polynomials and will be denoted by

P (T). Just like the δn’s these zn’s considered as elements of L2(T) will be denoted

by the same symbol. From the context one has to make out the ambient space.

(1) c00 is dense in `2(Z).

(2) By the Stone-Weirstrass theorem P (T) is dense in C(T).

(3)

〈zn, zm〉 =

∫ 1

0

e2πinθe2πimθdθ =

1 if n = m

0 otherwise.
(2.13)

(4) FZ : δn 7→ z−n for all n ∈ Z.

(5) Combining the above we see that the Fourier transform restricted to c00

gives an innerproduct preserving bijective map from c00 to P (T).

By proposition (1.11) FZ extends to a unitary. It remains to verify the intertwining

condition (2.12).

(FZ ◦ πZ(δn))(δk) = FZ(U(n)(δk))

= FZ(δk+n)

= z−(k+n)

= π̃T(z−n)(z−k)

= π̃T(FZ(δn))(z−k)

= (π̃T(FZ(δn)) ◦ FZ)(δk).

Thus we have

(FZ ◦ πZ(δn))(v) = (π̃T(FZ(δn)) ◦ FZ)(v),∀v ∈ c00.

Boundedness of the operators (FZ ◦πZ(δn)), (FZ ◦πZ(δn)) along with the density

of c00 implies that

(FZ ◦ πZ(δn)) = (π̃T(FZ(δn)) ◦ FZ).

The inequalities (2.7,2.9) together with the density of c00 in `1(Z) completes the

proof. �

Following the general prescription suggested in (2.10) the Fourier transform in

the case of G = T is given by

FT : L1(T)→ Cb(Z); f 7→ f̂ , where f̂(n) =

∫ 1

0

f(θ)e−2πinθdθ.

Proposition 2.9 (Riemann-Lebesgue Lemma). Fourier transform of an integrable

function on T vanishes at infinity, that is f̂(n)→ 0.
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Proof. By the Stone-Weirstrass theorem trigonometric polynomials are dense in

C(T) and C(T) is dense in L1(T). Hence trigonametric polynomials are dense in

L1(T). So, given an f ∈ L1(T), we can find a trigonametric polynomial P such

that ‖f − P‖1 < ε. By (2.11) we know that

|(f̂ − P̂ )(n)| ≤ ‖FT(f − P )‖ ≤ ‖f − P‖1 < ε.

By (2.13) we also know that P̂ (n) = 0 whenever |n| is large say greater than some

N . Therefore for n such that |n| > N , we have |f̂(n)| < ε. �

Theorem 2.10 (Unitarity of the Fourier transform). The Fourier transform FT

restricted to L2(T) gives a unitary operator FT,2→2 from L2(T) to `2(Z).

Proof. Let f ∈ L2(T) ⊆ L1(T). Note that f̂(n) = 〈zn, f〉 where {zn : n ∈ Z} is the

o.n.b of L2(T) given by zn(e2πiθ) = e2πinθ. Now the proof follows from corollary

(1.26) once we note that FT,2→2 is nothing but the unitary used in the proof of

(1.26). �

Definition 2.11. Given f ∈ L2(T) the n-th Fourier coefficient is defined as

f̂(n) = 〈zn, f〉 =

∫ 1

0

f(e2πiθ)e−2πinθdθ

where zn : e2πiθ 7→ e2πinθ. The series of functions
∑
f̂(n)e2πinθ is called the

Fourier series of f .

Corollary 2.12. Let f ∈ L2(T), then
∫ 1

0
|f(e2πiθ)|2dθ =

∑
n∈Z |f̂(n)|

2
.

Proof. ∫ 1

0

|f(e2πiθ)|2dθ = ‖f‖2 = ‖FT,2→2(f)‖2 =
∑
n∈Z
|f̂(n)|

2
.

�

3. Spectral Theorem for Compact Operators

Definition 3.1. Let H1,H2 be Hilbert spaces. A linear map T : H1 → H2 is called

compact if the image of the unit ball in H1 under T is precompact.

These operators in general have a certain structure. In this section we will learn

that. We begin with an alternative characterization of compact operators.

Proposition 3.2. Let T ∈ B(H) then T is compact if and only if T converts weakly

convergent nets to norm convergent nets. That is

(〈v, uα〉 → 〈v, u〉,∀v ∈ H) =⇒ ‖T (uα)− T (u)‖ → 0.

Proof. Let {uα}α∈A be a weakly convergent net with u as its limit. The net {T (uα)}
weakly converges to T (u) because

〈v, T (uα)〉 = 〈T ∗(v), uα〉 → 〈T ∗(v), u〉〈v, T (u)
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In order to utilize the hypothesis that T is a compact operator note that the set

{uα : α ∈ A} is weakly bounded. Hence by exercise (5.2) it is norm bounded. So

there exists M such that sup{‖uα‖ : α ∈ A} < M . Since T is compact any subnet

of {T (uα)} has a convergent subnet and the limit must be T (u), because {T (uα)}
weakly converges to T (u). Since the limit of the convergent subnet of any given

subnet does not depend on the net the original net must be convergent with the

same limit, i.e., ‖T (uα)− T (u)‖ → 0.

Conversely, let {T (uα)} be a net in T (B(0, 1)). By Banach-Alaoglu theorem we

can conclude that {uα} has a convergent subnet. Then the corresponding subnet

{T (uα)} converges. This shows that T (B(0, 1)) is relatively compact or equivalently

has compact closure. �

Definition 3.3. A linear operator is called finite rank if its range is a finite di-

mensional subspace.

Theorem 3.4. Let T ∈ B(H), then T is a compact operator if and only if T is a

norm limit of finite rank operators.

Proof. Only if part: Let T be a compact operator. Therefore given ε > 0, there

exists y1, · · · , ynε such that T (B(0, 1)) ⊆ ∪nεj=1B(yj , ε). Let {eα}α∈A be an o.n.b

for H. Then there exists a finite subset F of A such that∑
α/∈F

|〈yj , eα〉|2 < ε2,∀j = 1, · · · , nε.(3.14)

Let y be an element of the norm closure of T (B(0, 1)). Then there exists yj such

that ∑
α/∈F

|〈y − yj , eα〉|2 ≤
∑
α∈A
|〈y − yj , eα〉|2 = ‖y − yj‖2 < ε2(3.15)

Therefore, ∑
α/∈F

|〈y, eα〉|2 < 4ε2.(3.16)

Let PF be the orthogonal projection on the span of {eα : α ∈ F} and TF = PFT .

By proposition 3.2 TF is a compact operator. Let x ∈ B(0, 1) and y = T (x) ∈
T (B(0, 1)). By (3.16) we see that ‖T (x)− TF (x)‖ < 2ε. Therefore ‖T − TF ‖ < 2ε.

If part: Let {Tn} be a sequence of finite rank operators such that ‖Tn−T‖ → 0.

Let {uα} be a weakly convergent net with u as its weak limit, i.e., 〈v, uα〉 →
〈v, u〉,∀v ∈ H. The set {uα} is weakly bounded and hence by exercise (5.2) is norm

bounded say by M > 1. Find N such that ‖Tn − T‖ < ε
3M whenever n ≥ N . Let

γ be such that ‖TNuα − TNuβ‖ < ε
3M provided α, β � γ. Then for such α, β,

‖Tuα − Tuβ‖ ≤ ‖Tuα − TNuα‖+ ‖Tuβ − TNuβ‖+ ‖TNuα − TNuβ‖ ≤ ε.

Thus {T (uα)} is a Cauchy net hence convergent. �
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Theorem 3.5. Let T ∈ B(H) be a self-adjoint compact operator, T 6= 0, then

Λ+ = sup{〈u, Tu〉 : ‖u‖ = 1} = sup{〈u, Tu〉 : ‖u‖ ≤ 1}

Λ− = inf{〈u, Tu〉 : ‖u‖ = 1} = inf{〈u, Tu〉 : ‖u‖ ≤ 1}

are attained. Let u+, u− b the vectors where Λ+,Λ− are attained, then at least one

of the following holds,

Tu± = Λ±u±.

Proof. Let F (u) = 〈u, Tu〉., then this is a real valued function because,

F (u) = 〈Tu, u〉 = 〈u, T ∗u〉 = 〈u, Tu〉 = Fu).

Also for ‖u‖ ≤ 1, |F (u)| ≤ ‖u‖2‖T‖ ≤ ‖T‖. Therefore Λ± makes sense. Let {un} be

a sequence such that ‖un‖ ≤ 1 and F (un)→ Λ+. Since a Hilbert space is reflexive

by Banach-Alaoglu theorem its unit ball is weakly compact the sequence {un} has

a weakly convergent subsequence. Without loss of generality we can assume that

un → u+, weakly. Then,

|F (un)− F (u+)| = |〈un, Tun〉 − 〈u+, Tu+〉|

≤ |〈un, Tun − Tu+〉|+ |〈un − u+, Tu+〉|

≤ ‖Tun − Tu+‖+ |〈un − u+, Tu+〉|

→ 0.

Since T is compact the first term goes to zero and the second term goes to zero

because {un} weakly converges to u+. Therefore F (u+) = limF (un) = Λ+. Clearly

‖u+‖ = 1, because otherwise there exists ε > 0 such that ‖(1 + ε)u+‖ = 1, and

F ((1 + ε)u+) = (1 + ε)F (u+) > F (u+). Similarly we obtain u− such that F (u−) =

Λ−.

Λ± both can not be zero: Suppose that Λ+ = Λ− = 0. Then for any u of unit

norm, F (u) = 0. Thus for any u, we get 〈u, Tu〉 = 0. Then by polarization we get

2〈v, Tu〉 = 〈u+ v, T (u+ v)〉+ i〈u+ iv, T (u+ iv)〉 = 0.

Therefore T = 0 a contradiction to T 6= 0! �

Without loss of generality we assume that Λ+ 6= 0. Then 〈u+, Tu+〉 = Λ+ > 0.

Therefore, T (u+) 6= 0.

Claim: v ∈ H, ‖v‖ = 1, v ⊥ u+ =⇒ v ⊥ Tu+
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Proof of Claim: Let vθ = (Cosθ)v + (Sinθ)u+, then ‖vθ‖ ≤ 1 and

F (vθ) = Cos2θ.F (v) + Sin2θ.F (u+) + CosθSinθ〈v, Tu+〉

+SinθCosθ〈u+, T v〉

= Cos2θF (v) + Sin2θF (u+) + Sin2θ<〈v, Tu+〉

We know that the function θ 7→ F (vθ) attains its maximum at θ = π/2. Therefore

dF (vθ)

dθ
|θ=π/2 = <〈v, Tu+〉 = 0.

Instead of v if we put
√
−1v we obtain =〈v, Tu+〉 = 0. Therefore 〈v, Tu+〉 = 0. �

Thus, Tu+ ∈ u⊥+
⊥

= Cu+. Let Tu+ = λu+, and

Λ+ = F (u+) = 〈u+, Tu+〉 = λ‖u+‖2 = λ.

If Λ− 6= 0 we similarly conclude that Tu− = Λ−u−. �

Lemma 3.6. Let T be a self-adjoint operator on a Hilbert space H. Then

‖T‖ = sup{|〈u, Tu〉| : ‖u‖ = 1}.(3.17)

Proof. Let M be the right hand side of 3.17. By Cauchy-Schwarz inequality we see

that M ≤ ‖T‖. Let u, v ∈ H be unit vectors and w = 〈Tv,u〉
|〈u,Tv〉|v. Then

〈u, Tw〉 = |〈u, Tv〉|

〈Tw, u〉 = 〈u, Tw〉 = 〈u, Tw〉.

If u+ w 6= 0,

|〈u+ w, T (u+ w)〉| = ‖u+ w‖2|〈 u+ w

‖u+ w‖
, T (

u+ w

‖u+ w‖
)〉| ≤M‖u+ w‖2.

If u+ w = 0 anyway this inequality holds. Similarly for u− w we have,

|〈u− w, T (u− w)〉| ≤M‖u− w‖2.

Note that

〈u+ w, T (u+ w)〉 = 〈u, Tu〉+ 2|〈u, Tv〉|+ 〈v, Tv〉|

〈u− w, T (u− w)〉 = 〈u, Tu〉 − 2|〈u, Tv〉|+ 〈v, Tv〉|
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Subtracting we get

4|〈u, Tv〉| = 〈u+ w, T (u+ w)〉 − 〈u− w, T (u− w)〉

≤ |〈u+ w, T (u+ w)〉|+ |〈u− w, T (u− w)〉|

≤ M(‖u+ w‖2 + ‖u− w‖2)

= 2M(‖u‖2 + ‖w‖2)

= 4M, since ‖u‖ = ‖w‖ = 1.

Therefore |〈u, Tv〉| ≤M and taking supremum over the left had side we obtain the

desired inequality ‖T‖ ≤M . �

Notation: Given a pair of vectors u, v ∈ H, |u〉〈v| stands for the operator

w 7→ 〈v, w〉u. In particular Pu := |u〉〈u| is the orthogonal projection onto the span

of u.

Theorem 3.7 (Spectral Theorem for Compact Self-adjoint Operator). Let T 6= 0

be a compact self-adjoint operator on H. Then there exists a sequence {λn} of

real numbers and a sequence of mutually orthogonal vectors {en} such that |λn| →
0, ‖en‖ = 1∀n and

T =
∑

λn|en〉〈en|,(3.18)

where the sum appearing in (3.18) is norm convergent.

Proof. Let T (0) = T,H(0) = H. Now we will successively define

(1) Hilbert spaces H(n) for n ≥ 0 such that H(n+1) ⊆ H(n).

(2) Compact self-adjoint operators T (n) : H(n) → H(n).

(3) Vectors en+1 ∈ H(n) orthogonal to H(n+1) and scalars λn+1 for n ≥ 0.

This will be defined in a manner so that if Q(n) denotes the orthogonal projection

onto H(n+1) then

T (n+1) = T (n)Q(n) = Q(n)T (n)(3.19)

T (n) = λn+1Pen+1 + T (n+1), for n ≥ 0,(3.20)

‖T (n+1)‖ ≤ |λn+1|.(3.21)

This is achieved through repeated applications of theorem (3.5). Assume that

we have defined (T (k),H(k)) for k ≤ n. If T (n) = 0 then T (n+1) = 0,H(n+1) =

H(n), λn+1 = 0, en+1 = 0. Otherwise apply theorem (3.5) for the operator T (n).

(λn+1, en+1) =

(Λ+(T (n)), u+(T (n))), if Λ+(T (n)) ≥ Λ−(T (n))

(Λ−(T (n)), u−(T (n))) otherwise.

Then T (n)en+1 = λn+1en+1 and consequently λn+1Pen+1 = T (n)Pen+1 = Pen+1T .

Let Q(n) = IH(n) − Pen+1 and H(n+1) be the range of Q(n). If we take T (n+1) =
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T (n)Q(n) then all the conditions will be met. Adding (3.20) for 0 ≤ n ≤ k we

obtain,

T =

k∑
n=0

λn+1Pen+1 + T (k+1)(3.22)

Since {en} converges to zero weakly |λn| = ‖T (en)‖ converges to zero. It follows

from the inequality (3.21) that ‖T (n)‖ converges to zero. This proves (3.18). �

Definition 3.8. Let T ∈ B(H), then λ is an eigenvalue of T with eigenvector

u 6= 0 if Tu = λu. The subspace Eλ = {u ∈ H : Tu = λu} is called the eigenspace

corresponding to the eigenvalue λ.

Corollary 3.9. Let T 6= 0 be a compact operator with a spectral resolution given

by (3.18). Then λ 6= 0 is an eigenvalue iff λ equals one of the λn’s. Also

Eλ = span{en : λn = λ}.(3.23)

Proof. Let A be the orthonormal set consisting of en’s. Extend it to an orthonormal

basis A′. Let λ 6= 0 be an eigenvalue with eigenvector u. Then by corollary (1.22)

u =
∑
n〈en, u〉en +

∑
α∈A′\A〈α, u〉α. Therefore Tu =

∑
n λn〈en, u〉en. On the

other hand λu =
∑
n λ〈en, u〉en +

∑
α∈A′\A〈α, u〉α. Using Tu = λu we obtain,

〈α, u〉 = 0,∀α ∈ A′ \A(3.24)

λ〈en, u〉 = λn〈en, u〉,∀n.(3.25)

Equation (3.24) tells us that u belongs to the closed linear span of en’s. Hence

there exists n0 such that 〈en0
, u〉 6= 0. Using equation (3.25) for n0 we conclude

λ = λn0
. The converse is obvious.

Clearly the left hand side of (3.23) is contained in the right hand side and we

need to show the other inclusion. Let u ∈ Eλ. Then not only u belongs to the span

of en’s, equation (3.25) tells us that 〈en, u〉 6= 0 only if λ = λn. Therefore using

(1.5) we get,

u =
∑

n:λn=λ

〈en, u〉en ∈ span{en : λn = λ}.

�
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4. Appendix

4.1. Nets. A partially ordered set P is a set along with an order relation a � b

satisfying (i) a � a (reflexive), (ii) a � b, b � a =⇒ a = b (antisymmetric) (iii)

a � b, b � c =⇒ a � c, (transitive). A directed set is a preordered (reflexive:

a � a, transitive: a � b � c =⇒ a � cordered set P such that for any two elements

a, b ∈ P,∃c ∈ P such that a � c, b � c. A net in a topological space X is a map

x : P → X where P is a directed set. Nets are often denoted as {xα}α∈P . A net

{xα} converges to x ∈ X if given any open neighborhood U of x there exists α0

such that for all α0 � α, xα ∈ U . A net {xα} in a metric space (X, d) is called

Cauchy if ∀ε > 0,∃α0 such that d(xα, xβ) < ε whenever α, β � α0.

Proposition 4.1. Let X be a topological space and U ⊆ X. Then x ∈ U iff there

exists a net xα in U converging to x.

Proof. Let xα be a net converging to x. Then given any open neighborhood of x

it will contain some xα and hence an element from U . Thus x is contained in the

closure of U . Conversely suppose x is an element from closure of U . Let P be the

directed set consisting of open neighborhoods of x. Define U1 � U2 if U2 ⊆ U1.

Since x lies in the closure of U every neighborhood V of x will contain an element

of U say xV . This defines a net converging to x. �

Proposition 4.2. In a complete metric space (X, d) every Cauchy net converges.

Proof. Exercise (5.1) �

4.2. Sums. Let X be a set and a : X → C be a function. We want to attach a

meaning to
∑
x∈X a(x). Consider the set D of finite subsets of X. Given two such

finite subsets α, β of X we define α � β if α ⊆ β. With this order D becomes

a directed set. Now consider the net {aα}α∈D, where aα =
∑
x∈α a(x).If this

net converges we say that the sum
∑
x∈X a(x) is meaningful and

∑
x∈X a(x) =

limα∈D aα.

Proposition 4.3. Let a : X → C be such that
∑
x∈X a(x) makes sense. Then

Supp(a) = {x ∈ X : a(x) 6= 0} is countable, and if we fix a one to one and onto

map φ : N→ Supp(a), then
∑∞
n=1 |a(φ(n))| <∞ and

∑
x∈X a(x) =

∑∞
n=1 a(φ(n)).

Note that this sum does not depend on the map φ.

Proof. Let limα∈D aα = A, that means given ε > 0 there exists α0 such that

whenever we have a finite subset α of X such that

α ⊇ α0, |aα −A| < ε.(4.26)

Let Xn = {x ∈ X : <(a(x)) > 1/n}, then Xn must be finite. Because otherwise,

if we take a subset αk of Xn of size kn, then <(aαk) > k. Let βk = αk ∪ α0, then

<(aβk) = <(aαk) + <(aα0
) > k + <(A) − ε. On the other hand by 4.26, <(aβk) <
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<(A) + ε, a contradiction. Similarly one shows that {x ∈ X : <(a(x)) < −1/n} is

finite. Thus we get {x ∈ X : |<(a(x)| > 1/n} is finite. Exactly along the same lines

one shows that {x ∈ X : |=(a(x))| > 1/n} is finite. �

Remark 4.4. Note that there is nothing special about the Banach space C, if E is

a Banach space and a : X → E is a function we can similarly define
∑
x∈X a(x)
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5. Exercises

Exercise 5.1. In a complete metric space (X, d) every Cauchy net converges.

Exercise 5.2. Let E be a Banach space. Let X be a weakly bounded subset of E.

That means for all φ ∈ E∗, φ(X) is a bounded subset of K. Then X is a norm

bounded subset of E.

Exercise 5.3 (Hermite Polynomials). (1)
∫∞
−∞ e−

x2

2 dx =
√

2π.

(2) Let ρN (t, x) = e−
(t2−2tx)

2 ,then show that

1√
2π

∫ ∞
−∞

ρN (t, x)ρN (s, x)e−
x2

2 dx = ets.

(3) Let ρN (t, x) =
∑∞
n=0

tn

n!Hn(x), show that

1√
2π

∫
Hk(x)√

k!

Hl(x)√
l!
e−

x2

2 dx = δkl, k, l = 0, 1, · · · .

(4) Hn(x) = (−1)
n
e
x2

2
dn

dxn (e−
x2

2 ).

These are orthogonal polynomials with respect to the measure µ(E) = 1√
2π

∫
E
e−

x2

2 dx.

Exercise 5.4 (Laguerre Polynomials). Let

fΓ(x) =

 1
Γ(α)x

α−1e−x, for x > 0

0, otherwise
,

where α > 0. Let µ be the measure given by µ(E) =
∫
E
fΓ(x)dx.

(1) Let ρΓ(t, x) = 1
(1−t)α e

− tx
(1−t) ,then show that∫ ∞

0

ρΓ(t, x)ρΓ(s, x)fΓ(x)dx =
1

(1− ts)α
,

=

∞∑
n=0

α(α+ 1) · · · (α+ n− 1)

n!
tnsn

(2) Let ρΓ(t, x) =
∑∞
n=0

tn

n!Ln(x), show that∫
`k(x)`l(x)fΓ(x)dx = δkl, k, l = 0, 1, · · · .

where

`k(x) =

(
1

k!α(α+ 1) · · · (α+ k − 1)

) 1
2

Lk(x).

Exercise 5.5. Let H be a Hilbert space and T : H×H → K be a sesquilinear form.

If there exists a positive constant C such that

|T (u, v)| ≤ C‖u‖‖v‖,∀u, v ∈ H.

Then there is a unique bounded linear map T̃ ∈ B(H) such that ‖T̃‖ ≤ C and

T (u, v) = 〈T̃ (u), v〉,∀u, v ∈ H.
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Exercise 5.6. If we have Hilbert spaces H1,H2, and a sesquilinear map B : H1 ×
H2 → K such that

|B(u, v)| ≤ C‖u‖‖v‖,∀u ∈ H1,∀v ∈ H2

where C is a positive constant then there exists a bounded linear map T : H1 → H2

of norm less than or equal to C and

B(u, v) = 〈T (u), v〉,∀u ∈ H1,∀v ∈ H2.

Exercise 5.7. Let T ∈ B(H). Then there is a unique linear map denoted by T ∗

such that

〈T ∗(u), v〉 = 〈u, T (v)〉, ∀u, v ∈ H.(5.27)

Moreover ‖T ∗‖ = ‖T‖ and T ∗∗ = T .

Exercise 5.8. In the set up of exercise (5.5) there exists a unique bounded linear

map T ′ ∈ B(H) such that ‖T ′‖ ≤ C and

T (u, v) = 〈u, T ′(v)〉,∀u, v ∈ H.

Exercise 5.9. A bounded linear map U on a Hilbert space is a unitary iff U∗U =

UU∗ = I, where I stands for the identity operator.

Exercise 5.10 (Lax-Milgram). The bilinear form T is called coercive if ∃a > 0

such that T (u, u) ≥ a‖u‖2,∀u ∈ H. By exercise (5.5) we know that there exists

T̃ ∈ B(H) such that T (u, v) = 〈T̃ (u), v〉. If T is given to be coercive.

(i) Show that T̃ is one to one.

(ii) Let Ran be the range of T̃ . Consider S : Ran→ H given by S(u) = v where

u = T̃ (v). Show that S is bounded. and using this show that Ran is closed.

(iii) Show that T̃ is onto i.e., Ran = H.
(iv) Conclude given φ ∈ H there exists unique u ∈ H such that T (u, v) =

〈φ, v〉,∀v ∈ H.

Exercise 5.11. Let x, y : [0, 1]→ R be C1-functions such that ‖dxdt ‖
2

+‖dydt ‖
2

= `2,

then |
∫ 1

0
y(t)dxdt dt| ≤

`2

4π .

Exercise 5.12. Let (Ω,S, µ) be a probability space and S′ ⊆ S a sub-σ-algebra.

Let f be a nonnegative measurable L1 function. Let L2(S′) be the space of square

integrable S′ measurable functions. Then L2(S′) ⊆ L2(S) is a closed subspace. Let

P be the corresponding projection. Show that

(1) If 0 ≤ f ≤ C then ∃N ∈ S′, µ(N) = 0 and a S′ measurable g such that on

N c, 0 ≤ g ≤ C and g = Pf a.e. Such a g will be called a version of Pf .

(2) ∫
A

fdµ =

∫
A

Pfdµ, ∀A ∈ S′.(5.28)
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(3) Let fn = f ∧n, then ∃N ∈ S′, µ(N) = 0 such that outside N , each Pfn has

a version gn such that 0 ≤ gn ≤ n and gn ≤ gn+1,∀n ≥ 1. Let g = lim gn.

Show that ∫
A

fdµ =

∫
A

gdµ,∀A ∈ S′.(5.29)

Such a g is called the conditional expectation of f given S′ and is denoted

by E(f |S′). This is an S′ measurable integrable function unique upto a µ

null set.
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