
7. Simple and semisimple modules (Après Bourbaki Algebra Chapter 8 §3)
[s:ssmod]

In this section A denotes a ring with unity. Modules will mean left A-modules.
Submodules will mean A-submodules. Maximal submodules will mean maximal
proper submodules; minimal submodules will mean minimal non-zero submodules.

[ss:smod]
7.1. Simple modules. A module is simple if it is non-zero and does not admit a
proper non-zero submodule. Simplicity of a module M is equivalent to either of:

• Am = M for every m non-zero in M . simple module

• M ' A/m for some maximal left ideal of A.
In particular, simple modules are cyclic; and the annihilator of any non-zero element
of a simple module is a maximal left ideal.

The annihilator of a simple module is called a primitive ideal. The ring A is primitive ideal

primitive ringprimitive if the zero ideal is primitive, or, equivalently, if A admits a faithful simple
module.8

• A module may have no simple submodules. Indeed, simple submodules
of AA are minimal left ideals, but there may not be any such (e.g., in Z).

• The module AA is simple if and only if A is a division ring. In this case,
any simple module is isomorphic to AA.

• The Z-module Z/pnZ where p is a prime is indecomposable; it is simple if
and only if n = 1.

• Let A = Endk V for k a field and V a k-vector space. The set a of finite rank
endomorphisms is a two-sided ideal of A. Let B be the subring A generated
by the identity endomorphism and a. Then V is a simple B-module (in
particular a simple A-module). And B ( A if dimk V is infinite. Let W
be a codimension 1 subspace of V . The endomorphisms killing W form a
minimal left ideal in A (and in B). Thus A and B when dimk V is infinite
give examples of primitive rings that admit non-trivial proper two-sided
ideals.

An application of Zorn’s lemma gives:
[p:maxexists]

Proposition 7.1. Let M be a finitely generated A-module and N ( M a proper
submodule. Then there exists a maximal submodule of M containing N .

[c:p:maxexists]
Corollary 7.2. Let M be finitely generated non-zero. Then there exists a primitive
ideal a such that aM ( M . This corollary

is essentially
Nakayama’s
lemma.

Proof. Choose N maximal submodule and let a = AnnM/N . �

[sss:faithful]
7.1.1. When faithful modules with strong properties exist. If a ring admits faithful
modules with strong properties (e.g., a primitive ring), then, as might be expected,
the ring itself has strong properties.

[p:lidealsimple]
Proposition 7.3. Let M be faithful simple and l a minimal left ideal. Then M ' l.

Proof. The submodule lM is non-zero by faithfulness. Choose m in M such that
lm 6= 0. By simplicity, lm = M . The homomorphism l → M defined by a 7→ am
has zero kernel because l is minimal. � [p:jhfgfaith]

8We should, strictly speaking, say left primitive (not just primitive), for there are rings that

admit faithful simple left modules but not faithful simple right modules (and of course vice-versa).
Similarly, we should distinguish between left and right primitive ideals although both kinds are

two-sided ideals being annihilators of modules.
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Proposition 7.4. Let M be a faithful module admitting a composition series Σ. If
the opposite of M is of finite type, then every simple A-module is a quotient in Σ.

Proof. Let {mi} be a finite generating set of M over the commutant of A. Consider
the map a 7→ (ami) from AA into ⊕iM . If ami = 0 for all i, then aM = 0 and
so a = 0 by the faithfulness of M . Thus AA imbeds into a finite number of copies
of M . Every simple module being a quotient of AA, we are done. �

[ss:ssmod]
7.2. Semisimple modules. A module is semisimple if it satisfies any of the fol-
lowing equivalent conditions:

• it is a sum of simple submodules.
• it is a direct sum of simple submodules.
• every submodule has a complement.

Before turning to the proof of the equivalence of the three conditions, let us observe
that the third condition passes to submodules and quotient modules. Indeed, every
quotient is isomorphic to a sub (M/N ' Q, where Q is a complement of N), so it
is enough to observe the passage for submodules. If P ⊆ N are submodules, and Q
is a complement of P in M , then Q ∩ N is a complement of P in N as is easily
verified.

Now we prove the equivalence of the three conditions. The second clearly implies
the first. Now suppose that the first holds and let N be a submodule. Choose, by
Zorn, a submodule maximal P with respect to the following two properties: it is a
sum of simple submodules; it intersects N trivially. If N ⊕ P ( M , then there is a
simple submodule S of M that is not contained in N +P . This means S∩(N +P ) =
0, by the simplicity of S, so N ∩ (S + P ) = 0. Since S + P ) P , the maximality
of P is violated. Thus N ⊕ P = M , and the third conditon holds.

Suppose now that the third condition holds. We will show that the second holds
too. Choose, by Zorn, a maximal collection C of simple submodules whose sum is
their direct sum. Let N be the sum of submodules in such a collection, and suppose
that N ( M . Choose y ∈ M ⊆ N . Choose, by Zorn, a maximal submodule P
of Ay. Let S be complement to P in Ay (it exists by the observation we made before
beginning the proof). Being isomorphic to Ay/P , it is simple. And its existence
violates the maximality of the collection C, which finishes the proof.

[ss:ssmodfacts]
7.2.1. Facts about semisimple modules.

(1) A simple module is semisimple. Vector spaces (over division rings) are
semisimple. The ring Z is not a semisimple module over itself.

(2) Let M be a sum of simple submodules Ni, i ∈ I. For any submodule N ,
there exists a subset J of I such that N is isomorphic to the direct sum of
Nj , j ∈ J ; and there exists a subset K of I such that the direct sum of Nk,
k ∈ K, is a complement of N . In particular, M/N ' ⊕k∈KNk.

(3) Subquotients of semisimple modules are semisimple.
[ss:isossmod]

7.3. Isotypic components of semisimple modules. For an isomorphism class λ
of simple modules, we denote by Mλ the sum of submodules of M that are isomor-
phic to a representative in the class λ. We call Mλ the λ-isotypic component .

• The isotypic components are semisimple (by definition); their sum is direct.
• N = ⊕λ(N ∩Mλ) for any submodule N of a semisimple module M .
• The λ-isotypic is mapped to the λ-isotypic under homomorphisms.
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• The only submodules that are preserved by all endomorphisms of a semisim-
ple module are the isotpyic components and their sums.

[ss:lssmod]
7.4. Length of a semisimple module. Let M be a semisimple module. If
⊕i∈IMi and ⊕j∈JMj are two expressions for M as a direct sum of simple sub-
modules, then I and J have the same cardinality, which we then call the length
of M and denote by `A M . If S is a simple module, we denote by [M : S] the
length of the S-isotypic component of M .

• When `A M is finite, M has a composition series, and `A M coincides with
Jordan-Hölder length of M .

• Two semisimple modules are isomorphic if and only if their S-isotypic
lengths are equal for every simple module S.

• A semisimple module has finite length if and only if it is finitely generated.
• The length of a vector space equals the cardinality of a base.


