7. Simple and semisimple modules (Après Bourbaki Algebra Chapter 8 §3)

In this section A denotes a ring with unity. Modules will mean left A-modules. Submodules will mean A-submodules. Maximal submodules will mean maximal proper submodules; minimal submodules will mean minimal non-zero submodules.
7.1. Simple modules. A module is simple if it is non-zero and does not admit a proper non-zero submodule. Simplicity of a module M is equivalent to either of:

- $A m=M$ for every m non-zero in M.
- $M \simeq A / \mathfrak{m}$ for some maximal left ideal of A.

In particular, simple modules are cyclic; and the annihilator of any non-zero element of a simple module is a maximal left ideal.

The annihilator of a simple module is called a primitive ideal. The ring A is primitive if the zero ideal is primitive, or, equivalently, if A admits a faithful simple module. ${ }^{8}$

- A module may have no simple submodules. Indeed, simple submodules of ${ }_{A} A$ are minimal left ideals, but there may not be any such (e.g., in \mathbb{Z}).
- The module ${ }_{A} A$ is simple if and only if A is a division ring. In this case, any simple module is isomorphic to ${ }_{A} A$.
- The \mathbb{Z}-module $\mathbb{Z} / p^{n} \mathbb{Z}$ where p is a prime is indecomposable; it is simple if and only if $n=1$.
- Let $A=\operatorname{End}_{k} V$ for k a field and V a k-vector space. The set \mathfrak{a} of finite rank endomorphisms is a two-sided ideal of A. Let B be the subring A generated by the identity endomorphism and \mathfrak{a}. Then V is a simple B-module (in particular a simple A-module). And $B \subsetneq A$ if $\operatorname{dim}_{k} V$ is infinite. Let W be a codimension 1 subspace of V. The endomorphisms killing W form a minimal left ideal in A (and in B). Thus A and B when $\operatorname{dim}_{k} V$ is infinite give examples of primitive rings that admit non-trivial proper two-sided ideals.
An application of Zorn's lemma gives:
Proposition 7.1. Let M be a finitely generated A-module and $N \subsetneq M$ a proper submodule. Then there exists a maximal submodule of M containing N.

Corollary 7.2. Let M be finitely generated non-zero. Then there exists a primitive ideal \mathfrak{a} such that $\mathfrak{a} M \subsetneq M$.

Proof. Choose N maximal submodule and let $\mathfrak{a}=\operatorname{Ann} M / N$.
7.1.1. When faithful modules with strong properties exist. If a ring admits faithful modules with strong properties (e.g., a primitive ring), then, as might be expected, the ring itself has strong properties.

Proposition 7.3. Let M be faithful simple and \mathfrak{l} a minimal left ideal. Then $M \simeq \mathfrak{l}$.
Proof. The submodule $\mathfrak{l} M$ is non-zero by faithfulness. Choose m in M such that $\mathfrak{l} m \neq 0$. By simplicity, $\mathfrak{l} m=M$. The homomorphism $\mathfrak{l} \rightarrow M$ defined by $a \mapsto a m$ has zero kernel because \mathfrak{l} is minimal.
simple module
primitive ideal primitive ring
[p:maxexists]
[c:p:maxexists]
This corollary
is essentially
Nakayama's
lemma.
[sss:faithful]
[p:1idealsimple]
[p : jhfgfaith]

[^0]Proposition 7.4. Let M be a faithful module admitting a composition series Σ. If the opposite of M is of finite type, then every simple A-module is a quotient in Σ.

Proof. Let $\left\{m_{i}\right\}$ be a finite generating set of M over the commutant of A. Consider the map $a \mapsto\left(a m_{i}\right)$ from ${ }_{A} A$ into $\oplus_{i} M$. If $a m_{i}=0$ for all i, then $a M=0$ and so $a=0$ by the faithfulness of M. Thus ${ }_{A} A$ imbeds into a finite number of copies of M. Every simple module being a quotient of ${ }_{A} A$, we are done.

7.2.1. Facts about semisimple modules.

(1) A simple module is semisimple. Vector spaces (over division rings) are semisimple. The ring \mathbb{Z} is not a semisimple module over itself.
(2) Let M be a sum of simple submodules $N_{i}, i \in I$. For any submodule N, there exists a subset J of I such that N is isomorphic to the direct sum of $N_{j}, j \in J$; and there exists a subset K of I such that the direct sum of N_{k}, $k \in K$, is a complement of N. In particular, $M / N \simeq \oplus_{k \in K} N_{k}$.
(3) Subquotients of semisimple modules are semisimple.
7.3. Isotypic components of semisimple modules. For an isomorphism class λ of simple modules, we denote by M_{λ} the sum of submodules of M that are isomorphic to a representative in the class λ. We call M_{λ} the λ-isotypic component.

- The isotypic components are semisimple (by definition); their sum is direct.
- $N=\oplus_{\lambda}\left(N \cap M_{\lambda}\right)$ for any submodule N of a semisimple module M.
- The λ-isotypic is mapped to the λ-isotypic under homomorphisms.
- The only submodules that are preserved by all endomorphisms of a semisimple module are the isotpyic components and their sums.
7.4. Length of a semisimple module. Let M be a semisimple module. If $\oplus_{i \in I} M_{i}$ and $\oplus_{j \in J} M_{j}$ are two expressions for M as a direct sum of simple submodules, then I and J have the same cardinality, which we then call the length of M and denote by $\ell_{A} M$. If S is a simple module, we denote by $[M: S]$ the length of the S-isotypic component of M.
- When $\ell_{A} M$ is finite, M has a composition series, and $\ell_{A} M$ coincides with Jordan-Hölder length of M.
- Two semisimple modules are isomorphic if and only if their S-isotypic lengths are equal for every simple module S.
- A semisimple module has finite length if and only if it is finitely generated.
- The length of a vector space equals the cardinality of a base.

[^0]: ${ }^{8}$ We should, strictly speaking, say left primitive (not just primitive), for there are rings that admit faithful simple left modules but not faithful simple right modules (and of course vice-versa). Similarly, we should distinguish between left and right primitive ideals although both kinds are two-sided ideals being annihilators of modules.

