
REPRESENTATION THEORY ELECTIVE COURSE
MID-TERM EXAM

INSTITUTE OF MATHEMATICAL SCIENCES, AUGUST–NOVEMBER 2009

24 SEPTEMBER 2009, 1530 TO 1745 HRS, MATSCIENCE ROOM 123

Please hand in your paper no later than at 1745. Answer in the space provided.
Sheets for rough work are provided separately and should not be handed in.

(1) Prove or disprove: an Artinian subring of a division ring is a division ring.

Solution: The statement is true.
Proof: Let A be an Artinian subring (containing the identity) of a division
ring. Let a be in A. Multiplication by a (on, say, the left) is an injective
endomorphism of A. Since A is Artinian this is also surjective. Which
means that 1 is in the image and a−1 belongs to A. 2
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(2) Let p be a prime and G be a p-group not admitting Z/pZ × Z/pZ as a
quotient. What can you say about G?

Solution: We claim that G is cyclic.
Proof: Proceed by induction on the order of G. If G is the trivial group,
then of course it is cyclic, which proves the base case of the induction. Now
to the induction step.

The centre of a p-group being non-trivial, there exists a non-trivial cen-
tral element of order p, say g, in G. The hypothesis passes to G/〈g〉, so by
induction G/〈g〉 is cyclic. If a ∈ G is such that its image in G/〈g〉 is the
generator, we have G = 〈a, g〉 and G is abelian.

If G = 〈a〉, then of course G is cyclic and we are done. Otherwise g 6∈ 〈a〉,
and G/〈ap〉 ' Z/pZ× Z/pZ. 2
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(3) Let V be a finite dimensional vector space over a division ring D. Let A
be a subring of D-endomorphisms of V . Assume that A is 2-transitive,
i.e., given any two linearly independent elements v, w of V and any two
elements v′, w′ of V , there exists a in A such that av = v′ and aw = w′.1

Compute the commutant and bicommutant of A, even A itself.

Solution:

Claim 1: V is a simple A-module. (This needs only 1-transitivity.)
Proof: Let W be an A-submodule, 0 6= W ⊆ V . Given v ∈ V and 0 6= w ∈
W , there exists, by 1-transitivity, a ∈ A such that aw = v, but then aw
belongs to W . Thus W = V . 2 (Claim 1)

Now, by Schur, EndA V is a division ring, say E. Since A ⊆ EndD V , it
is clear that E ⊇ D.
Claim 2: E = D. (In other words, the commutant of A is D.)
Proof: Let e ∈ E.

If, for some v ∈ V , the elements ev and v are D-linearly independent,
then we have a contradiction: by 2-transitivity, there exists a in A such that
av = 0 but a(ev) 6= 0, but then a(ev) = e(av) = e0 = 0, a contradiction.

Let 0 6= v be in V . Let d ∈ D be such that ev = dv. Now e − d is an
A-endomorphism of V and has non-trivial kernel. Since the kernel is an
A-submodule, it is all of V (by Claim 1), and so e = d. 2 (Claim 2)

Conclusion: the commutant of A is D (Claim 2), so the bicommutant
is EndD V ; finally, by the density theorem and the hypothesis of finite
dimensionality of V (and Claim 1), it follows that A = EndD V . 2

1This should be taken to mean that A is also 1-transitive (to cover for the situation when there

may not exist two linearly independent elements, lest the hypothesis on A become vacuous).
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(4) Let A be an algebra of finite dimension over an algebraically closed field k.
Let V1, . . . , Vm be simple A-modules no two of which are isomorphic.
Consider the commutant C of the ring of homotheties of the module V1 ⊕
· · · ⊕ Vm. List all the simple C-modules and their dimensions (over k).

Solution: By the universal properties of direct sum and direct product:

EndA(V1 ⊕ · · · ⊕ Vm) =
∏

1≤i≤m

∏
1≤j≤m

HomA(Vi, Vj)

By Schur: HomA(Vi, Vj) is zero if i 6= j; moreover, in the case i = j,
HomA(Vi, Vi) = EndA Vi is a division ring.

Since A is a k-algebra, we have k ⊆ EndA Vi ⊆ Endk Vi, so the division
ring EndA Vi contains k in its centre. Since each Vi is of finite dimension
over k, it follows that EndA Vi is of finite dimension as a k-vector space.
Since k is algebraically closed, we conclude that EndA Vi = k for all i.

We have thus proved that the commutant C := EndA(V1 ⊕ · · · ⊕ Vm)
is

∏
1≤i≤m EndA Vi =

∏
1≤i≤m k. In particular, C is commutative. Let us

write ki for EndA Vi. Every ideal of C is of the form ⊕i∈Ski, where S is a
subset of {1, . . . ,m}. Thus the maximal ideals are precisely ⊕i 6=i0ki, as i0
varies over 1, . . . , m.

We conclude that there are precisely m different simple C-modules,
namely ki0 ' C/ ⊕i 6=i0 ki, each of dimension 1 over k. (The modules are
non-isomorphic because their annihilators are different. The annihilators
are the respective maximal ideals themselves, C being commutative.) 2
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(5) Prove or disprove: a module is semisimple if its opposite is so.

Solution: The statement is false.
Counter-example: Let V be the space of 2 × 1 matrices over a field k.
Let A be the k-algebra of 2×2 upper triangular matrices over k. Then V is
an A-module by left multiplication. It is not semi-simple: the only simple
submodule is the space of matrices with vanishing (2, 1) entries.

We claim that the commutant of A is just k (i.e., scalar matrices). The
commutant being a k-subalgebra of Endk V , this is just a calculation with
matrices: on the one hand, A contains the diagonal matrices, so the com-
mutant is contained in the space of diagonal matrices; on the other hand,
we have(

a 0
0 b

) (
0 1
0 0

)
=

(
0 a
0 0

)
and

(
0 1
0 0

) (
a 0
0 b

)
=

(
0 b
0 0

)
which proves the claim.

Thus the opposite of V is a vector space over a field. In particular, it is
semisimple. 2


