
3. Solvable, super-solvable, and nilpotent groups

Let G be a group.

3.1. Commutators; solvability and nilpotency. The commutator (g, h) of ele-
ments g, h of G is defined to be the element ghg−1h−1. If H and K are subgroups,
the subgroup generated by all commutators (h, k) with h ∈ H and k ∈ K, de-
noted (H,K), is the commutator group of H and K. It is normal, respectively
characteristic,4 if H and K are so.

The subgroup (G, G) is called the commutator subgroup or derived subgroup. It
is characteristic and the quotient by it is abelian. In fact, any abelian quotient
of G factors through G/(G, G). Taking successive commutators, we can generate
two descending series of characteristic subgroups of G:

• D0G := G, D1G := (G, G), . . . , Di+1G := (DiG, DiG), . . .
• C0G := G, C1G := (G, G), . . . , Ci+1G := (G, CiG), . . .

Solvability and
nilpotencyWe call G solvable if DnG = {1} for some n; nilpotent if CnG = {1} for some n.

3.2. Characterizing solvability. In order to formulate useful characterizations
of solvability, consider the existence of a series of subgroups

(3.1) {1} = G0 ⊆ G1 ⊆ G2 ⊆ . . . ⊆ Gn = G

where each Gi is normal in Gi+1 and the quotients Gi+1/Gi are abelian. Consider
also the existence of such series satisfying stronger conditions:

the Gi are normal in G(3.2)

the quotients Gi+1/Gi are cyclic(3.3)

Let G be solvable and choose n such that DnG = {1}. Then the series consisting
of the subgroups Gi := Dn−iG is of the form (3.1); in fact, it evidently satisfies
the stronger condition (3.2). On the other hand, if a series like (3.1) exists, then,
firstly, since (Gi+1, Gi+1) ⊆ Gi, it follows that DnG = {1}, so G is solvable; next,
we can refine the given series by inserting between Gi and Gi+1 subgroups normal
in Gi+1 in such a way that successive quotients in the refined series are cyclic. The
refined series thus satisfies the stronger condition (3.3).

We’ve thus proved the equivalence of the following conditions on a group G:
• G is solvable
• there exists a subgroup series as in (3.1)
• there exists a subgroup series as in (3.1) satisfying (3.2)
• there exists a subgroup series as in (3.1) satisfying (3.3)

Solvablility does not however imply the existence of a subgroup series (3.1) satis-
fying simultanenously both (3.2) and (3.3). If such a series exists, then we call G Super-solvability

super-solvable. It is routine to verify the following:
• Super-solvable groups are of course solvable.
• Subgroups and quotients of solvable (respetively super-solvable) groups are

solvable (respectively super-solvable).
• Extensions of solvable groups by solvable groups are solvable.
• Cyclic extensions of super-solvable groups are super-solvable.
• A solvable (respectively super-solvable) group can be constructed by succes-

sive abelian (respetively cyclic) extensions starting from the trivial group.

4A subgroup is characteristic if it is invariant under all automorphisms of the group.
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3.3. An equivalent condition for nilpotency. Consider the following ascending
series of subgroups (where z(G) denotes the centre of G):

(3.4) G0 := {1}, G1 := z(G), Gi+1 is defined by Gi+1/Gi = z(G/Gi).

It is routine to verify the following:
• G is nilpotent if and only if Gn = G for some n in the series (3.4). In fact,

CnG = {1} if and only if Gn = G.
• Subgroups and quotients of nilpotent groups are nilpotent.
• Central extensions of nilpotent groups are nilpotent.
• Nilpotent groups are super-solvable (and so solvable).
• p-groups are nilpotent by (1.8).

3.4. Structure of finite nilpotent groups.

Theorem 3.1. A finite nilpotent group has a unique Sylow p-subgroup for every
prime p. In particular, it is a direct product of its Sylow p-subgroups. Conversely,
any product of p-groups is nilpotent.

Proof. Let P be a Sylow p-subgroup and N its normalizer. On the one hand, by
the last item of (1.10), N is its own normalizer; on the other hand, by the lemma
below, N is strictly contained in its normalizer if N is proper; which leads us to
conlcude that N is the whole group, or, in other words, that P is normal. Since
Sylow p-subgroups are all conjugate (1.10), it follows that P is the unique Sylow
p-subgroup. The second assertion now follows from an elementary calculation: see
1.4.11. �

Lemma 3.2. The normalizer in a nilpotent group of a proper subgroup H strictly
contains H.

Proof. Let G1 be the centre of G, and G2 the subgroup of G such that G2/G1 is
the center of G/G1, . . . . Then Gn equals G for some n—this is what it means for G
to be nilpotent. Since H is proper, there is an i such that Gi ⊆ H and Gi+1 6⊆ H.
Choose n in Gi+1 \H. Then, for h in H, (n, h) = nhn−1h−1 belongs to Gi and so
to H, which means that nhn−1 belongs to H. Thus n normalizes H. �

3.5. Exercises.

3.5.1. The dihedral group Dn defined in §2.1.1 is super-solvable. It is nilpotent if
and only if n is a power of 2.

3.5.2. A maximal proper subgroup of a nilpotent group is normal. In particular,
a subgroup whose index is prime is normal (in a nilpotent group).

3.5.3. Let G be a p-group. Then:
• Every subgroup of index p is normal.
• If G is not cyclic, then it has Z/pZ × Z/pZ as a quotient.
• If G/(G, G) is cyclic, then G is cyclic.


