
4. Linear representations of a group as modules for the group ring

Fix a commutative ring k with identity. It is called the base ring or just the base.

4.1. Associative algebras with identity. A k-module A is a k-algebra if we
are given a k-linear map µ : A ⊗k A → A, or, what amounts to the same, a
k-bilinear map A × A → A. We call µ the multiplication. It is associative if
µ(a ⊗ µ(b ⊗ c)) = µ(µ(a ⊗ b) ⊗ c), in which case it is convenient to write just ab
for µ(a, b). An identity for an associative algebra A is an element 1 of A such that
1a = a1 = a for all a in A. We can talk about units in an associative algebra with
identity: a in A is a unit if there is an element b of A such that ab = ba = 1.5 Units
form a group under multiplication.

A map of algebras is a k-linear map respecting multiplication. A map of asso-
ciative algebras with identity is a map of algebras respecting also the identity. The
restriction to the group of units of such a map is a group homomorphism into the
group of units.

The prototypical example of an associative k-algebra with identity is Endk V , the
set of all k-linear endomorphisms of a k-module V : multiplication is composition
and identity the identity endomorphism of V . Rings with identity are precisely
associative Z-algebras with identity. Prototypical examples of rings with identity
are therefore rings of endomorphisms of abelian groups.

Precomposing the multiplication of an algebra by the flip, we get its opposite:
µopp(a⊗ b) := µ(b ⊗ a). The k-module A with this new multiplication µopp is the
opposite algebra Aopp of A. If A is associative with identity then so is Aopp. An
anti-homomorphism from an algebra A to an algebra B is a homomorphism from
A to Bopp (or, equivalently, from Aopp to B).

The space Mn(k) of n×n matrices is an associative k-algebra with identity under
matrix multiplication. The transpose map is an anti-endomorphism of Mn(k).

4.1.1. Modules. Let A be an associative k-algebra with identity. An A-module or
representation of A is a homomorphism ρ : A → Endk V of associative algebras
with identity, where V is a k-module. We often just say that V is an A-module,
the homomorphism ρ being tacitly understood.

Analogous to the case for the case of groups acting on sets discussed in §1,
modules are either left or right depending upon the choice of direction for endo-
morphisms to act. We indicate the direction by writing A as a subscript: AV if V
is a left module and VA if it is a right module. A left A-module is naturally a right
Aopp-module (and vice-versa): we need only define va := av. Thus, if there exists
a natural choice of an isomorphism a 7→ a? from A to Aopp, we can convert left
A-modules to right A-modules and vice-versa by the rule: va := a?v and av := va?.

A homomorphism of A-modules is a k-linear map that commutes with multi-
plication by elements of A. In particular, the set EndA V of A-endomorphisms
of an A-module V is the centralizer in Endk V of the image of A under the map

5If l and r are elements in an associative algebra with identity such that lr = 1, then l is a left

inverse for r and r is a right inverse for l. An element a could have a left inverse but no right

inverse and vice-versa. A two-sided inverse for a is an element b such that ab = ba = 1. Units
are precisely elements with two-sided inverses. If a has both a left inverse l and a right inverse r,

then l = r, so a is a unit: l = l1 = l(ar) = (la)r = 1r = r.
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A → Endk V defining the A-module structure on V . It is an associative subalgebra
with identity of Endk V .6

4.1.2. Remarks. A k-module V is tautologically a module for Endk V . It is called
the defining representation of Endk V .

4.1.3. Left and right regular representations. Let A be an associative k-algebra with
identity. Then A has naturally the structure of a left A-module and also that of
a right A-module: these are called the left regular and the right regular represen-
tations respectively. Indeed, for a in A, the maps λa : b 7→ ab and ρa : b 7→ ba
are k-linear endomorphisms of A; and, under the convention that Endk A acts on
the left on A, the map λ : a 7→ λa (respectively ρ : a 7→ ρa) is a homomorphism
(respectively anti-homomorphism) into Endk A respecting identity. If Endk A acts
on the right on A, then λ would be an anti-homomorphism and ρ a homomorphism.
The images of λ and ρ are both in either case subalgebras of Endk A.

Proposition 4.1. The maps λ : a 7→ λa and ρ : a 7→ ρa are monomorphisms. The
centralizer in Endk A of the subalgebra λ(A) is ρ(A) and vice-versa.

Proof. We can recover a from λa (respectively ρa) as the image of 1 under it, which
proves the first assertion. For the second, first observe that λaρb(x) = a(xb) =
(ax)b = ρpλa(x), so λ(A) and ρ(A) centralize each other. Now suppose ϕ in Endk A
commutes with all of λ(A). Setting b := ϕ(1), we have ϕ(a) = ϕ(a1) = aϕ(1) =
ab = ρb(a), so ϕ = ρb. The proof of the other part is similar. �

Corollary 4.2. The algebra EndA A of endomorphisms of an associatve algebra A
with identity as a module over itself (whether right or left) is isomorphic to the
opposite Aopp of A: EndA A ' Aopp .

4.2. The group ring. Let G be a group. Denote by kG the free k-module with
basis G. We identify G with its image in kG. Extending k-bilinearly the multipli-
cation map on G, we get a multiplication on kG. This multiplication is associative
and has identity (namely the identity 1 of the group). Thus kG is an associative
k-algebra with identity. It is the group ring .

A routine verification proves the following:

Proposition 4.3. The natural injection G → kG has the following properties:
(1) It identifies G as a subgroup of the group of units of kG.
(2) Its image spans k-linearly the group ring.
(3) Given an associative k-algebra A with identity and a homomorphism ϕ of

groups from G into the group of units of A, there is a unique map of k-
algebras ϕ̃ : kG → A that extends ϕ.

The algebra kG comes equipped with further structure:
• there is a natural map kG → k defined by g 7→ 1 for all g in G.

6If V is a left A-module, it is convenient to let EndA V act on the right, so that V becomes an
A- EndA V bimodule: for associative k-algebras C and D with identity, a C-D bimodule, denoted
suggestively by CVD, is a k-module V that is simultaneously a left C-module and a right D-module
and satisfies (cv)d = c(vd).

Applying the above to the speical case A = k, every left k-module V is naturally a k- Endk V

bimodule. Now if V is also an A-module, it is natural to write the action of A on the right, so
that V becomes a k-A bimodule. This explains the notation is older treatises: the base ring acts
on the left and the algebra or ring on the right.
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• the map g 7→ g−1 defines an isomorphism of kG with its opposite kGopp.

4.3. Linear representations of groups. Let G be a group and X be a G-set. It
is interesting to consider situations in which X has some additional structure and
the image of the given group homomorphism G → BijX lands in the subgroup of
bijections preserving the structure. We are especially interested in a particular such
situation: namely when X is a k-module V . We call V a linear representation or
just a representation of G in such a case. Sometimes we use the term G-module for
a linear representation. To summarise: a k-module V is a G-module if we are given
a group homomorphism from G to the group GLk V of k-linear bijections of V .

A linear map f : V → W of G-modules is a G-map if it is a map of G-sets, or,
in other words, if it “commutes with the G-action”: f(gv) = g(fv).

4.4. Group representations as modules for the group ring. Let V be a
representation of G and ρ : G → GLk V its defining group homomorphism. Since
GLk V is the group of units in the algebra Endk V , there is a unique lift of ρ to a
map ρ̃ : kG → Endk V of associative algebras with identity (Proposition 4.3(3)).
Thus a G-module is naturally a kG-module. Under this identification, G-module
maps are kG-module maps (Proposition 4.3(2)).

There is also a natural way to regard kG-modules as G-modules, which is a
‘two-sided inverse’ to the above procedure. Indeed, the algebra homomorphism
kG → Endk W defining the kG-module structure on a k-module W , on restriction
to G, gives a group homomorphism into GLk V (Proposition 4.3(1)).


