10. The Radical (Aprè̀ Bourbaki Algebra Chapter 8 §6)

Let A be a ring (with identity according to our convention) and M an A-module. For additive subgroups U and V of A and M respectively, we denote by $U V$ the subset of M consisting of finite sums $\sum_{i} u_{i} v_{i}$ with u_{i} and v_{i} in U and V respectively. Thus $U V$ is a submodule if U is a left ideal; the product of left ideals is a left ideal; the product of a left ideal and a right ideal is a two-sided ideal.
10.3. The radical of a ring. The radical $\mathfrak{R a d} A$ of A is defined to be its radical as a left module over itself: $\mathfrak{R a d} A:=\mathfrak{R a d}{ }_{A} A$. The annihilator of a simple module (in other words, a primitive ideal) is evidently the intersection of the annihilators of the non-zero elements of the module; these being all maximal left ideals, we get
$\mathfrak{R a d} A=$ intersection of annihilators of simple (respectively, semisimple) modules

We have:

- $\mathfrak{R a d} A$ is a two sided ideal. For, annihilators of modules are two sided ideals.
- $(\mathfrak{R a d} A) M \subseteq \mathfrak{R a d} M$, for $M / \mathfrak{R a d} M$ is a submodule of a direct product of simple modules and so killed by $\mathfrak{R a d} A$. Equality need not hold even in very good cases: e.g. $A=\mathbb{Z}$ and $M=\mathbb{Z} / p^{n} \mathbb{Z}$ with $n \geq 1$.
- Nakayama's lemma: If M is a of finite type and N a submodule such that $N+(\mathfrak{R a d} A) M=M$, then $N=M .($ For, $(\mathfrak{R a d} A) M \subseteq \mathfrak{R a d} M$. See the relevant sub-item of the last section.)
- Let M be of finite type and \mathfrak{m} a right ideal contained in the radical $\mathfrak{R a d} A$. If $A_{A} / \mathfrak{m} \otimes_{A} M=0$, then $M=0$. (For, $0=A_{A} / \mathfrak{m} \otimes_{A} M \simeq$ $M / \mathfrak{m} M$ menas $(\mathfrak{R a d} A) M=M$.)
- Let $u: M \rightarrow N$ be a A-linear map of modules. Let \mathfrak{m} be a right ideal contained in $\mathfrak{R a d} A, N$ be finitely generated, and id $\otimes u: A_{A} \otimes_{A} M \rightarrow$ $A_{A} \otimes_{A} N$ be surjective. Then u is surjective.
- Let \mathfrak{a} be a two sided ideal of A. Then $\mathfrak{R a d}(A / \mathfrak{a}) \supseteq(\mathfrak{R a d} A+\mathfrak{a}) / \mathfrak{a}$. If $\mathfrak{a} \subseteq$ $\mathfrak{R a d} A$, then $\mathfrak{R a d}(A / \mathfrak{a})=\mathfrak{R a d} A / \mathfrak{a}$. (The A-module structure of A / \mathfrak{a} coincides with that of its structure as a module over itself. Now use the relevant items from the last section.)
- The $\mathfrak{R a d} A$ is the smallest two sided ideal such that $A / \mathfrak{R a d} A$ has no radical. (By the previous item it follows that $A / \mathfrak{R a d} A$ has no radical as a ring. Conversely, if $\mathfrak{R a d}(A / \mathfrak{a})=0$, then $(\mathfrak{R a d} A+\mathfrak{a}) / \mathfrak{a}=0$ (previous item), so $\mathfrak{R a d} A \subseteq \mathfrak{a}$.)

Theorem 10.1. An element x of the ring A belongs to the radical if and only if 1 - ax has a left inverse for every a in A.

Proof. This follows from the characterization in the last section of elements belonging to the radical of a module of finite type.

We have as corollaries:

- $\mathfrak{R a d} A$ is the largest left ideal \mathfrak{a} such that $1-x$ has a left inverse for every x in \mathfrak{a}.
- $\mathfrak{R a d} A$ is the largest two sided ideal \mathfrak{a} such that $1-x$ is invertible for every x in \mathfrak{a}. (By the theorem, it suffices to show that $1-x$ is invertible when x is in $\mathfrak{R a d} A$. We know that it has a left inverse, say $y: y(1-x)=y-y x=1$. We will show that y is invertible, i.e., it also has a left inverse. It will then follow that $(1-x)=y^{-1}$ is also invertible. Since $z:=1-y=-y x$ belongs to $\mathfrak{R a d} A$, there exists y^{\prime} such that y^{\prime} is a left inverse for $1-z=y$.)
- $\mathfrak{R a d}\left(A^{\text {opp }}\right)=\mathfrak{R a d} A$. (This is a consequence of the previous item.)
- Any nil ideal (left, right, or two sided) is contained in the radical. (The previous item is used in the proof that a right nil ideal is contained in the radical.)
- The radical of a direct product of rings is the direct product of the radicals.

Not every nilpotent element is contained in the radical (e.g., in $M_{n}(\mathbb{C})$). But a nilpotent central element belongs to the radical, for the ideal it generates is nil. $\mathfrak{R a d} A$ is not necessarily a nil ideal; in particular, not necessarily nilpotent. It can happen that $\mathfrak{R a d} A^{2}=\mathfrak{R a d} A$ even if $\mathfrak{R a d} A$ is a nil ideal.

Theorem 10.2. A left ideal \mathfrak{l} is contained in $\mathfrak{R a d} A$ if and only if for every finitely generated non-zero module M we have $\mathfrak{l} M \neq M$

Proof. The 'only if' part is Nakayama's lemma. For the if part, the hypothesis implies that $\mathfrak{l} N=0$ for every simple module N (because simple modules are cyclic and contain no non-trivial proper submodules), which means $\mathfrak{l} \subseteq \mathfrak{R a d} A$.

As examples, we have:

- Let A be the ring $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ of formal power series in finitely many variables over a field k. The units in A are the series with non-zero constant term. The elements with vanishing constant term constitute the unique maximal ideal of A, which therefore is the radical. There are no non-trivial nilpotent elements in A.

The quotient field of A has of course no radical. Thus the sub-ring of a ring without radical could well have radical.

- Let C be an integral domain and B the polynomial ring $C\left[X_{1}, \ldots, X_{n}\right]$ in finitely many variables over C. Then, if $n>0, B$ has trivial radical: in fact, for $0 \neq f$, we have $\operatorname{deg}(1-f g)>0$ and so $1-f g$ is not a unit for g any element of positive degree.

Let k be a field. Then $k\left[X_{1}, \ldots, X_{n}\right]$ is without radical. But its over ring $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ has non-trivial radical intersecting $k\left[X_{1}, \ldots, X_{n}\right]$ non-trivially.

- Let k be a field, S a set, and A the ring of k valued functions on S. Then A is without radical. Indeed, the evaluation at any point s of S gives a morphism $A \rightarrow k$, whose kernel is therefore a maximal ideal. The intersections of these maximal ideals as s varies over S is clearly 0 .

Proposition 10.3. Let A be a principal ring.
(1) A is without radical if and only if either A is a field or A has infinitely many maximal ideals.
(2) $A / A x$ is without radical if and only if x is square free.

Proof. Let $\left(p_{\alpha}\right)$ be a system of representatives of maximal elements. The maximal ideals of A are $A p_{\alpha}$. In order that

10.4. The radicals of Artinian rings and modules.

Theorem 10.4. Let A be Artinian. Then $\mathfrak{R a d} A$ is the largest two sided nilpotent ideal of A.

Proof. Any nil ideal (one-sided or two-sided) is contained in the radical, as has already been observed in the last subsection. It suffices to prove therefore that $\mathfrak{R a d} A$ is nilpotent (we have also observed that $\mathfrak{R a d} A$ is a two-sided ideal, being the annihilitor of all simple modules). Set $\mathfrak{r}:=\mathfrak{R a d} A$. Choose n large enough so that $\mathfrak{r}^{n}=\mathfrak{r}^{n+1}=\ldots=: \mathfrak{a}$. It suffices to assume that $\mathfrak{a} \neq 0$ and arrive at a contradiction.

Assume $\mathfrak{a} \neq 0$. Choose a minimal left ideal \mathfrak{l} with the property that $\mathfrak{a l} \neq 0$ (such an ideal exists by the Artinian hypotheis: observe that $\mathfrak{a} A=\mathfrak{a} \neq 0$, so the collection of ideals with the property is non-empty). Now, on the one hand, $\mathfrak{a}(\mathfrak{r l})=(\mathfrak{a r}) \mathfrak{l}=\mathfrak{a l} \neq 0$, so that $\mathfrak{r l}$ has the property; on the other, $\mathfrak{r l} \subseteq \mathfrak{l}$. So $\mathfrak{r l}=\mathfrak{l}$ by the minimality of \mathfrak{l}.

We claim now that \mathfrak{l} is finitely generated. It will then follow, by Nakayama's lemma, that $\mathfrak{l}=0$, which is a contradiction, since $\mathfrak{a l} \neq 0$ by choice of \mathfrak{l}, and the proof will be over.

To prove the claim, we prove in fact that \mathfrak{l} is cyclic. Indeed, there exists $x \in \mathfrak{l}$ such that $\mathfrak{a} x \neq 0$ (by the choice of \mathfrak{l}); now $A x$ is such that $\mathfrak{a} A x \neq 0$ and $A x \subseteq \mathfrak{l}$, so that $A x=\mathfrak{l}$ by the minimality of \mathfrak{l}.
[c:commartrad]
[t :radartmod]
Theorem 10.6. M is semisimple of finite length if and only if it is Artinian and $\mathfrak{R a d} M=0$.

Proof. A finite length module is Artinian (and Noetherian); the radical of a semisimple module vanishes. Conversely, suppose that M is Artinian and $\mathfrak{R a d} M=0$. Consider, using Artinianness, a smallest element - call it N-of the set of submodules that are written as finite intersections of maximal submodules. (This collection is non-empty, M itself being the intersection of the empty collection.) If $N \neq 0$, choose $0 \neq n \in N$. Since $\mathfrak{R a d} M=0$, there exists a maximal submodule K such that $n \notin K$. Now, adding K to the collection from which we obtained N, we get a contradiction to the minimality of N, since $K \cap N \subsetneq N$. This shows $N=0$.

In other words, we have shown that there exist finitely many maximal submodules N_{1}, \ldots, N_{k} of M such that their intersection is 0 . This means $M \hookrightarrow$ $M / N_{1} \oplus \cdots \oplus M / N_{k}$. So M is of finite length and semisimple (since so is $M / N_{1} \oplus$ $\left.\cdots \oplus M / N_{k}\right)$.

We have, as corollories:

- If M is Artinian, then $M / \mathfrak{R a d} M$ is semisimple of finite length.
- A is semisimple if and only if it is Artinian with trivial radical.
- If A is Artinian, $A / \mathfrak{R a d} A$ is semisimple.
- A is simple if and only if it is Artinian and its only two sided ideals are 0 and itself.
- The following are equivalent for a commutative ring:
- it is Artinian and contains no non-trivial nilpotent elements;
- it is semisimple;
- it is a finite direct product of fields.
- Let k be a field and A a commutative finite dimensional k-algebra. Assume that $\mathfrak{R a d} A=0$. Then A is a finite direct product of fields, each of which is a finite extension of k.
[ss:modoverart]
10.5. Modules over Artinian rings.

Proposition 10.7. Let A be an Artinian ring and M an A-module. Then the following are equivalent:

- M is semisimple.
- $(\mathfrak{R a d} A) M=0$.
- A_{M} is semisimple.

Proof. If M is semisimple, then $\mathfrak{R a d} M=0$; in general, $(\mathfrak{R a d} A) M \subseteq \mathfrak{R a d} M$, so the first implies the second. If A_{M} is semisimple then of course M is so (being a module for A_{M}).

The hypotheis that A is Artinian will be used only now. Let $(\mathfrak{R a d} A) M=0$. Then A_{M} is a quotient of $A / \mathfrak{R a d} A$. But $A / \mathfrak{R a d} A$ is semisimple, it being Artinian and without radical. Hence so is A_{M}.

Proposition 10.8. Over an Artinian ring, there exist only finitely many isomorphism classes of simple modules, this number being equal to the number of simple components of $A / \mathfrak{R a d} A$.

Proof. Any simple module is a module also for $A / \mathfrak{R a d} A$. And $A / \mathfrak{R a d} A$ is a semisimple ring.

Proposition 10.9. Let A be a ring admitting a two sided nilpotent ideal \mathfrak{n} such that A / \mathfrak{n} is semisimple (e.g., an Artinian ring). For any A-module, the following conditions are equivalent:

- M is of finite length
- M is Artinian
- M is Noetherian

Proof. If M is of finite length then of course it is both Artinian and Noetherian. Now suppose that $\mathfrak{n}^{p}=0$ and that M is Artinian (respectively, Noetherian). Consider the filtration $M \supseteq \mathfrak{n} M \supseteq \mathfrak{n}^{2} M \supseteq \ldots \supseteq \mathfrak{n}^{p-1} M \supseteq \mathfrak{n}^{p} M=0$. The quotients are $M / \mathfrak{n} M, \mathfrak{n} M / \mathfrak{n}^{2} M, \ldots, \mathfrak{n}^{p-1} M / \mathfrak{n}^{p} M$. These being modules over the semisimple $\operatorname{ring} A / \mathfrak{n}$, they are on the one hand semisimple. On the other, being sub-quotients of M, they are Artinian (respectively, Noetherian). But a semisimple module is of finite length if it is Artinian (or Noetherian). So each of the quotients is of finite length and therefore so is M.

Corollary 10.10. A finitely generated module over an Artinian ring is of finite length. In particular, the ring itself is of finite length. Artinian rings are therefore Noetherian.

Proof. A finitely generated module is Artinian. Now apply the proposition.

10.6. Exercises.

10.6.1. Let A be a ring.

- Let Z be the centre of A. Show that $Z \cap \mathfrak{R a d} A$ is contained in $\mathfrak{R a d} Z$.
- Show that $\mathfrak{R a d} A$ does not contain any non-zero idempotent.
10.6.2. If $\mathfrak{R a d} M=0$, then $\mathfrak{R a d} A_{M}=0$.
10.6.3. Let A be a ring such that $A / \mathfrak{R a d} A$ is semisimple. Then for any A module M, we have $\mathfrak{R a d} M=(\mathfrak{R a d} A) M$. Hint: Observe that $M /(\mathfrak{R a d} A) M$ is a $A / \mathfrak{R a d} A$-module.

