
10. The Radical (Après Bourbaki Algebra Chapter 8 §6)
[s:rad]

Let A be a ring (with identity according to our convention) and M an A-module.
For additive subgroups U and V of A and M respectively, we denote by UV the
subset of M consisting of finite sums

∑
i uivi with ui and vi in U and V respectively.

Thus UV is a submodule if U is a left ideal; the product of left ideals is a left ideal;
the product of a left ideal and a right ideal is a two-sided ideal.

[ss:nil]
10.1. Nil and nilpotent ideals. An element a (respectively, an ideal a) of A is
nilpotent if an = 0 (respectively, an = 0) for some n ≥ 1. An ideal consisting of
nilpotent elements is a nil ideal . We have:

• If a is nilpotent, then 1 − a is a unit with inverse 1 + a1 + a2 + . . . (note
that the sum is finite).

• An ideal is nilpotent if and only if there exists an n such that the product
of any n elements all belonging to the ideal vanishes.

• A nilpotent ideal is clearly nil. But not every nil ideal is nilpotent. In fact,
in §?? we exhibit a non-zero nil ideal a such that a2 = a.

[ss:radm]
10.2. The radical of a module. The radical Rad M of a module M is the inter-
section of all its maximal submodules, or, equivalently, the intersection of kernels
of all homomorphisms into simple modules. We have:

• RadM vanishes if and only if M is the submodule of a direct product of
simple modules; in particular, a semisimple module has trivial radical.

• Homomorphisms map radicals into radicals. If a submodule N is contained
in Rad M , then Rad(M/N) = (Rad M)/N . The radical is the smallest
submodule N such that Rad(M/N) vanishes. (however, just because a sub-

module N contains Rad M , it does not mean that Rad(M/N) vanishes.)

• ⊕RadMi = Rad⊕Mi ⊆ Rad
∏

Mi ⊆
∏

Rad Mi.
• Let M be of finite type. Then

– Rad M = M implies M = 0; more generally, N + Rad M = M for
a submodule N implies N = M . (If N ( M , then choose P maximal

submodule with P ⊇ N—this uses the finite generation of M ; then Rad M ⊆ P ,

so N + Rad M ⊆ P .)

– x in M belongs to Rad M if and only if for any finite set x1, . . . , xn

of generators of M and any set a1, . . . , an of elements of A, the set
x1 + a1x, . . . , xn + anx is also a set of generators. (If x1, . . . , xn are

generators and a1, . . . , an are such that x1 + a1x, . . . , xn + anx are not, then

choose N maximal submodule containing x1 + a1x, . . . , xn + anx. Then x /∈ N ,

for otherwise x1, . . . , xn belong to N , a contradiction. Conversely, suppose x is

not in the radical. Then choose maximal N such that x /∈ N . Let a1 be such that

x1 + N = a1x + N (such an a1 exists since M/N is simple and x /∈ N). Let a2,

. . . , an be choosen analogously with respect to x2, . . . , xn. Then x1 − a1x, . . . ,

xn − anx all belong to N and therefore do not generate M .)

[ss:rada]
10.3. The radical of a ring. The radical Rad A of A is defined to be its radical
as a left module over itself: Rad A := Rad AA. The annihilator of a simple module
(in other words, a primitive ideal) is evidently the intersection of the annihilators
of the non-zero elements of the module; these being all maximal left ideals, we get

RadA = intersection of annihilators of simple (respectively, semisimple) modules
28
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We have:

• RadA is a two sided ideal. For, annihilators of modules are two sided ideals.

• (Rad A)M ⊆ Rad M , for M/Rad M is a submodule of a direct product of
simple modules and so killed by Rad A. Equality need not hold even in
very good cases: e.g. A = Z and M = Z/pnZ with n ≥ 1.

• Nakayama’s lemma: If M is a of finite type and N a submodule such
that N + (Rad A)M = M , then N = M . (For, (Rad A)M ⊆ Rad M . See the

relevant sub-item of the last section.)

– Let M be of finite type and m a right ideal contained in the radi-
cal Rad A. If AA/m ⊗A M = 0, then M = 0. (For, 0 = AA/m ⊗A M '
M/mM menas (Rad A)M = M .)

– Let u : M → N be a A-linear map of modules. Let m be a right ideal
contained in Rad A, N be finitely generated, and id⊗u : AA⊗A M →
AA ⊗A N be surjective. Then u is surjective.

• Let a be a two sided ideal of A. Then Rad(A/a) ⊇ (Rad A + a)/a. If a ⊆
RadA, then Rad(A/a) = RadA/a. (The A-module structure of A/a coincides

with that of its structure as a module over itself. Now use the relevant items from the

last section.)

• The Rad A is the smallest two sided ideal such that A/ Rad A has no radical.
(By the previous item it follows that A/ Rad A has no radical as a ring. Conversely, if

Rad (A/a) = 0, then (Rad A + a)/a = 0 (previous item), so Rad A ⊆ a.)

[t:jacperlis]
Theorem 10.1. An element x of the ring A belongs to the radical if and only if
1− ax has a left inverse for every a in A.

Proof. This follows from the characterization in the last section of elements belong-
ing to the radical of a module of finite type. �

We have as corollaries:

• RadA is the largest left ideal a such that 1− x has a left inverse for every
x in a.

• RadA is the largest two sided ideal a such that 1−x is invertible for every
x in a. (By the theorem, it suffices to show that 1− x is invertible when x is in Rad A.

We know that it has a left inverse, say y: y(1 − x) = y − yx = 1. We will show that y

is invertible, i.e., it also has a left inverse. It will then follow that (1− x) = y−1 is also

invertible. Since z := 1− y = −yx belongs to Rad A, there exists y′ such that y′ is a left

inverse for 1− z = y.)

• Rad (Aopp) = RadA. (This is a consequence of the previous item.)

• Any nil ideal (left, right, or two sided) is contained in the radical. (The

previous item is used in the proof that a right nil ideal is contained in the radical.)

• The radical of a direct product of rings is the direct product of the radicals.

Not every nilpotent element is contained in the radical (e.g., in Mn(C)). But a nilpo-

tent central element belongs to the radical, for the ideal it generates is nil. Rad A is

not necessarily a nil ideal; in particular, not necessarily nilpotent. It can happen that

Rad A2 = Rad A even if Rad A is a nil ideal.

Theorem 10.2. A left ideal l is contained in RadA if and only if for every finitely
generated non-zero module M we have lM 6= M
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Proof. The ‘only if’ part is Nakayama’s lemma. For the if part, the hypothesis
implies that lN = 0 for every simple module N (because simple modules are cyclic
and contain no non-trivial proper submodules), which means l ⊆ Rad A. �

As examples, we have:

• Let A be the ring k[[X1, . . . , Xn]] of formal power series in finitely many
variables over a field k. The units in A are the series with non-zero constant
term. The elements with vanishing constant term constitute the unique
maximal ideal of A, which therefore is the radical. There are no non-trivial
nilpotent elements in A.

The quotient field of A has of course no radical. Thus the sub-ring of a ring

without radical could well have radical.

• Let C be an integral domain and B the polynomial ring C[X1, . . . , Xn] in
finitely many variables over C. Then, if n > 0, B has trivial radical: in
fact, for 0 6= f , we have deg(1 − fg) > 0 and so 1 − fg is not a unit for g
any element of positive degree.

Let k be a field. Then k[X1, . . . , Xn] is without radical. But its over ring

k[[X1, . . . , Xn]] has non-trivial radical intersecting k[X1, . . . , Xn] non-trivially.

• Let k be a field, S a set, and A the ring of k valued functions on S.
Then A is without radical. Indeed, the evaluation at any point s of S
gives a morphism A → k, whose kernel is therefore a maximal ideal. The
intersections of these maximal ideals as s varies over S is clearly 0.

[p:radpid]
Proposition 10.3. Let A be a principal ring.

(1) A is without radical if and only if either A is a field or A has infinitely
many maximal ideals.

(2) A/Ax is without radical if and only if x is square free.

Proof. Let (pα) be a system of representatives of maximal elements. The maximal
ideals of A are Apα. In order that �

[ss:radart]
10.4. The radicals of Artinian rings and modules.

[t:artrad]
Theorem 10.4. Let A be Artinian. Then Rad A is the largest two sided nilpotent
ideal of A.

Proof. Any nil ideal (one-sided or two-sided) is contained in the radical, as has
already been observed in the last subsection. It suffices to prove therefore that
RadA is nilpotent (we have also observed that Rad A is a two-sided ideal, being
the annihilitor of all simple modules). Set r := Rad A. Choose n large enough
so that rn = rn+1 = . . . =: a. It suffices to assume that a 6= 0 and arrive at a
contradiction.

Assume a 6= 0. Choose a minimal left ideal l with the property that al 6= 0
(such an ideal exists by the Artinian hypotheis: observe that aA = a 6= 0, so
the collection of ideals with the property is non-empty). Now, on the one hand,
a(rl) = (ar)l = al 6= 0, so that rl has the property; on the other, rl ⊆ l. So rl = l by
the minimality of l.

We claim now that l is finitely generated. It will then follow, by Nakayama’s
lemma, that l = 0, which is a contradiction, since al 6= 0 by choice of l, and the
proof will be over.
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To prove the claim, we prove in fact that l is cyclic. Indeed, there exists x ∈ l
such that ax 6= 0 (by the choice of l); now Ax is such that aAx 6= 0 and Ax ⊆ l, so
that Ax = l by the minimality of l. �

[c:commartrad]
Corollary 10.5. The radical of a commutative Artinian ring equals the subset of
its nilpotent elements.

Proof. By Artinianness, the radical is nilpotent. By commutativity, the ideal gen-
erated by a nilpotent element is nilpotent, and so contained in the radical. �

[t:radartmod]
Theorem 10.6. M is semisimple of finite length if and only if it is Artinian and
RadM = 0.

Proof. A finite length module is Artinian (and Noetherian); the radical of a semisim-
ple module vanishes. Conversely, suppose that M is Artinian and Rad M = 0.
Consider, using Artinianness, a smallest element—call it N—of the set of submod-
ules that are written as finite intersections of maximal submodules. (This collection
is non-empty, M itself being the intersection of the empty collection.) If N 6= 0,
choose 0 6= n ∈ N . Since RadM = 0, there exists a maximal submodule K such
that n /∈ K. Now, adding K to the collection from which we obtained N , we get a
contradiction to the minimality of N , since K ∩N ( N . This shows N = 0.

In other words, we have shown that there exist finitely many maximal sub-
modules N1, . . . , Nk of M such that their intersection is 0. This means M ↪→
M/N1 ⊕ · · · ⊕M/Nk. So M is of finite length and semisimple (since so is M/N1 ⊕
· · · ⊕M/Nk). �

We have, as corollories:
• If M is Artinian, then M/Rad M is semisimple of finite length.
• A is semisimple if and only if it is Artinian with trivial radical.
• If A is Artinian, A/ Rad A is semisimple.
• A is simple if and only if it is Artinian and its only two sided ideals are 0

and itself.
• The following are equivalent for a commutative ring:

– it is Artinian and contains no non-trivial nilpotent elements;
– it is semisimple;
– it is a finite direct product of fields.

• Let k be a field and A a commutative finite dimensional k-algebra. Assume
that Rad A = 0. Then A is a finite direct product of fields, each of which
is a finite extension of k.

[ss:modoverart]
10.5. Modules over Artinian rings.

Proposition 10.7. Let A be an Artinian ring and M an A-module. Then the
following are equivalent:

• M is semisimple.
• (Rad A)M = 0.
• AM is semisimple.

Proof. If M is semisimple, then Rad M = 0; in general, (Rad A)M ⊆ Rad M , so
the first implies the second. If AM is semisimple then of course M is so (being a
module for AM ).
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The hypotheis that A is Artinian will be used only now. Let (RadA)M = 0.
Then AM is a quotient of A/ Rad A. But A/ RadA is semisimple, it being Artinian
and without radical. Hence so is AM . �

[p:artsimplemod]
Proposition 10.8. Over an Artinian ring, there exist only finitely many isomor-
phism classes of simple modules, this number being equal to the number of simple
components of A/ Rad A.

Proof. Any simple module is a module also for A/ Rad A. And A/ Rad A is a
semisimple ring. �

[p:abynss]
Proposition 10.9. Let A be a ring admitting a two sided nilpotent ideal n such
that A/n is semisimple (e.g., an Artinian ring). For any A-module, the following
conditions are equivalent:

• M is of finite length
• M is Artinian
• M is Noetherian

Proof. If M is of finite length then of course it is both Artinian and Noetherian.
Now suppose that np = 0 and that M is Artinian (respectively, Noetherian). Con-
sider the filtration M ⊇ nM ⊇ n2M ⊇ . . . ⊇ np−1M ⊇ npM = 0. The quotients
are M/nM , nM/n2M , . . . , np−1M/npM . These being modules over the semisimple
ring A/n, they are on the one hand semisimple. On the other, being sub-quotients
of M , they are Artinian (respectively, Noetherian). But a semisimple module is of
finite length if it is Artinian (or Noetherian). So each of the quotients is of finite
length and therefore so is M . �

Corollary 10.10. A finitely generated module over an Artinian ring is of finite
length. In particular, the ring itself is of finite length. Artinian rings are therefore
Noetherian.

Proof. A finitely generated module is Artinian. Now apply the proposition. �

10.6. Exercises.

10.6.1. Let A be a ring.
• Let Z be the centre of A. Show that Z ∩RadA is contained in Rad Z.
• Show that RadA does not contain any non-zero idempotent.

10.6.2. If RadM = 0, then RadAM = 0.

10.6.3. Let A be a ring such that A/ Rad A is semisimple. Then for any A-
module M , we have Rad M = (RadA)M . Hint: Observe that M/(Rad A)M is a

A/ Rad A-module.


