10. THE RADICAL (APRÈS BOURBAKI ALGEBRA CHAPTER 8 §6)

Let A be a ring (with identity according to our convention) and M an A-module. For additive subgroups U and V of A and M respectively, we denote by UV the subset of M consisting of finite sums $\sum_i u_i v_i$ with u_i and v_i in U and V respectively. Thus UV is a submodule if U is a left ideal; the product of left ideals is a left ideal; the product of a left ideal and a right ideal is a two-sided ideal.

10.1. Nil and nilpotent ideals. An element *a* (respectively, an ideal \mathfrak{a}) of *A* is *nilpotent* if $a^n = 0$ (respectively, $\mathfrak{a}^n = 0$) for some $n \ge 1$. An ideal consisting of nilpotent elements is a *nil ideal*. We have:

- If a is nilpotent, then 1 a is a unit with inverse $1 + a^1 + a^2 + ...$ (note that the sum is finite).
- An ideal is nilpotent if and only if there exists an *n* such that the product of any *n* elements all belonging to the ideal vanishes.
- A nilpotent ideal is clearly nil. But not every nil ideal is nilpotent. In fact, in §?? we exhibit a non-zero nil ideal \mathfrak{a} such that $\mathfrak{a}^2 = \mathfrak{a}$.

10.2. The radical of a module. The *radical* $\Re \mathfrak{a} \mathcal{M}$ of a module M is the intersection of all its maximal submodules, or, equivalently, the intersection of kernels of all homomorphisms into simple modules. We have:

- $\mathfrak{Rad} M$ vanishes if and only if M is the submodule of a direct product of simple modules; in particular, a semisimple module has trivial radical.
- Homomorphisms map radicals into radicals. If a submodule N is contained in $\mathfrak{Rad} M$, then $\mathfrak{Rad}(M/N) = (\mathfrak{Rad} M)/N$. The radical is the smallest submodule N such that $\mathfrak{Rad}(M/N)$ vanishes. (however, just because a submodule N contains $\mathfrak{Rad} M$, it does not mean that $\mathfrak{Rad}(M/N)$ vanishes.)
- \oplus Rad $M_i =$ Rad $\oplus M_i \subseteq$ Rad $\prod M_i \subseteq \prod$ Rad M_i .
- Let M be of finite type. Then
 - Rad M = M implies M = 0; more generally, $N + \operatorname{Rad} M = M$ for a submodule N implies N = M. (If $N \subsetneq M$, then choose P maximal submodule with $P \supseteq N$ —this uses the finite generation of M; then $\operatorname{Rad} M \subseteq P$, so $N + \operatorname{Rad} M \subseteq P$.)
 - x in M belongs to $\Re a \partial M$ if and only if for any finite set x_1, \ldots, x_n of generators of M and any set a_1, \ldots, a_n of elements of A, the set $x_1 + a_1 x, \ldots, x_n + a_n x$ is also a set of generators. (If x_1, \ldots, x_n are generators and a_1, \ldots, a_n are such that $x_1 + a_1 x, \ldots, x_n + a_n x$ are not, then choose N maximal submodule containing $x_1 + a_1 x, \ldots, x_n + a_n x$. Then $x \notin N$, for otherwise x_1, \ldots, x_n belong to N, a contradiction. Conversely, suppose x is not in the radical. Then choose maximal N such that $x \notin N$. Let a_1 be such that $x_1 + N = a_1 x + N$ (such an a_1 exists since M/N is simple and $x \notin N$). Let a_2 , \ldots, a_n be choosen analogously with respect to x_2, \ldots, x_n . Then $x_1 - a_1 x, \ldots, x_n - a_n x$ all belong to N and therefore do not generate M.)
- 10.3. The radical of a ring. The radical $\mathfrak{Rad} A$ of A is defined to be its radical as a left module over itself: $\mathfrak{Rad} A := \mathfrak{Rad}_A A$. The annihilator of a simple module (in other words, a primitive ideal) is evidently the intersection of the annihilators of the non-zero elements of the module; these being all maximal left ideals, we get

 $\mathfrak{Rad} A =$ intersection of annihilators of simple (respectively, semisimple) modules

[ss:radm]

[s:rad]

ss:nil

ss:rada

We have:

- $\mathfrak{Rad} A$ is a two sided ideal. For, annihilators of modules are two sided ideals.
- (Rad A)M ⊆ Rad M, for M/Rad M is a submodule of a direct product of simple modules and so killed by Rad A. Equality need not hold even in very good cases: e.g. A = Z and M = Z/pⁿZ with n ≥ 1.
- NAKAYAMA'S LEMMA: If M is a of finite type and N a submodule such that $N + (\mathfrak{Rad} A)M = M$, then N = M. (For, $(\mathfrak{Rad} A)M \subseteq \mathfrak{Rad} M$. See the relevant sub-item of the last section.)
 - Let M be of finite type and \mathfrak{m} a right ideal contained in the radical $\mathfrak{Rad} A$. If $A_A/\mathfrak{m} \otimes_A M = 0$, then M = 0. (For, $0 = A_A/\mathfrak{m} \otimes_A M \simeq M/\mathfrak{m}M$ menas ($\mathfrak{Rad} A$)M = M.)
 - Let $u: M \to N$ be a A-linear map of modules. Let \mathfrak{m} be a right ideal contained in $\mathfrak{Rad} A, N$ be finitely generated, and $\mathrm{id} \otimes u: A_A \otimes_A M \to A_A \otimes_A N$ be surjective. Then u is surjective.
- Let \mathfrak{a} be a two sided ideal of A. Then $\mathfrak{Rad}(A/\mathfrak{a}) \supseteq (\mathfrak{Rad} A + \mathfrak{a})/\mathfrak{a}$. If $\mathfrak{a} \subseteq \mathfrak{Rad} A$, then $\mathfrak{Rad}(A/\mathfrak{a}) = \mathfrak{Rad} A/\mathfrak{a}$. (The A-module structure of A/\mathfrak{a} coincides with that of its structure as a module over itself. Now use the relevant items from the last section.)
- The $\mathfrak{Rad} A$ is the smallest two sided ideal such that $A/\mathfrak{Rad} A$ has no radical. (By the previous item it follows that $A/\mathfrak{Rad} A$ has no radical as a ring. Conversely, if $\mathfrak{Rad}(A/\mathfrak{a}) = 0$, then $(\mathfrak{Rad} A + \mathfrak{a})/\mathfrak{a} = 0$ (previous item), so $\mathfrak{Rad} A \subseteq \mathfrak{a}$.)

Theorem 10.1. An element x of the ring A belongs to the radical if and only if 1 - ax has a left inverse for every a in A.

[t:jacperlis]

Proof. This follows from the characterization in the last section of elements belonging to the radical of a module of finite type. \Box

We have as corollaries:

- $\mathfrak{Rao} A$ is the largest left ideal \mathfrak{a} such that 1 x has a left inverse for every x in \mathfrak{a} .
- Rad A is the largest two sided ideal \mathfrak{a} such that 1-x is invertible for every x in \mathfrak{a} . (By the theorem, it suffices to show that 1-x is invertible when x is in Rad A. We know that it has a left inverse, say y: y(1-x) = y yx = 1. We will show that y is invertible, i.e., it also has a left inverse. It will then follow that $(1-x) = y^{-1}$ is also invertible. Since z := 1 y = -yx belongs to Rad A, there exists y' such that y' is a left inverse for 1 z = y.)
- $\mathfrak{Rad}(A^{\mathrm{opp}}) = \mathfrak{Rad}A$. (This is a consequence of the previous item.)
- Any nil ideal (left, right, or two sided) is contained in the radical. (The previous item is used in the proof that a right nil ideal is contained in the radical.)
- The radical of a direct product of rings is the direct product of the radicals.

Not every nilpotent element is contained in the radical (e.g., in $M_n(\mathbb{C})$). But a nilpotent central element belongs to the radical, for the ideal it generates is nil. $\mathfrak{Rad} A$ is not necessarily a nil ideal; in particular, not necessarily nilpotent. It can happen that $\mathfrak{Rad} A^2 = \mathfrak{Rad} A$ even if $\mathfrak{Rad} A$ is a nil ideal.

Theorem 10.2. A left ideal \mathfrak{l} is contained in \mathfrak{Rad} A if and only if for every finitely generated non-zero module M we have $\mathfrak{l}M \neq M$

Proof. The 'only if' part is Nakayama's lemma. For the if part, the hypothesis implies that lN = 0 for every simple module N (because simple modules are cyclic and contain no non-trivial proper submodules), which means $l \subseteq \mathfrak{Rad} A$.

As examples, we have:

• Let A be the ring $k[[X_1, \ldots, X_n]]$ of formal power series in finitely many variables over a field k. The units in A are the series with non-zero constant term. The elements with vanishing constant term constitute the unique maximal ideal of A, which therefore is the radical. There are no non-trivial nilpotent elements in A.

The quotient field of A has of course no radical. Thus the sub-ring of a ring without radical could well have radical.

• Let C be an integral domain and B the polynomial ring $C[X_1, \ldots, X_n]$ in finitely many variables over C. Then, if n > 0, B has trivial radical: in fact, for $0 \neq f$, we have deg(1 - fg) > 0 and so 1 - fg is not a unit for g any element of positive degree.

Let k be a field. Then $k[X_1, \ldots, X_n]$ is without radical. But its over ring $k[[X_1, \ldots, X_n]]$ has non-trivial radical intersecting $k[X_1, \ldots, X_n]$ non-trivially.

• Let k be a field, S a set, and A the ring of k valued functions on S. Then A is without radical. Indeed, the evaluation at any point s of S gives a morphism $A \to k$, whose kernel is therefore a maximal ideal. The intersections of these maximal ideals as s varies over S is clearly 0.

[p:radpid]

Proposition 10.3. Let A be a principal ring.

- (1) A is without radical if and only if either A is a field or A has infinitely many maximal ideals.
- (2) A/Ax is without radical if and only if x is square free.

Proof. Let (p_{α}) be a system of representatives of maximal elements. The maximal ideals of A are Ap_{α} . In order that

[ss:radart]

t:artrad

10.4. The radicals of Artinian rings and modules.

Theorem 10.4. Let A be Artinian. Then $\mathfrak{Rad} A$ is the largest two sided nilpotent ideal of A.

Proof. Any nil ideal (one-sided or two-sided) is contained in the radical, as has already been observed in the last subsection. It suffices to prove therefore that $\mathfrak{Rad} A$ is nilpotent (we have also observed that $\mathfrak{Rad} A$ is a two-sided ideal, being the annihilitor of all simple modules). Set $\mathfrak{r} := \mathfrak{Rad} A$. Choose *n* large enough so that $\mathfrak{r}^n = \mathfrak{r}^{n+1} = \ldots =: \mathfrak{a}$. It suffices to assume that $\mathfrak{a} \neq 0$ and arrive at a contradiction.

Assume $\mathfrak{a} \neq 0$. Choose a minimal left ideal \mathfrak{l} with the property that $\mathfrak{al} \neq 0$ (such an ideal exists by the Artinian hypotheis: observe that $\mathfrak{a}A = \mathfrak{a} \neq 0$, so the collection of ideals with the property is non-empty). Now, on the one hand, $\mathfrak{a}(\mathfrak{rl}) = (\mathfrak{ar})\mathfrak{l} = \mathfrak{al} \neq 0$, so that \mathfrak{rl} has the property; on the other, $\mathfrak{rl} \subseteq \mathfrak{l}$. So $\mathfrak{rl} = \mathfrak{l}$ by the minimality of \mathfrak{l} .

We claim now that l is finitely generated. It will then follow, by Nakayama's lemma, that l = 0, which is a contradiction, since $\mathfrak{a}l \neq 0$ by choice of l, and the proof will be over.

To prove the claim, we prove in fact that \mathfrak{l} is cyclic. Indeed, there exists $x \in \mathfrak{l}$ such that $\mathfrak{a}x \neq 0$ (by the choice of \mathfrak{l}); now Ax is such that $\mathfrak{a}Ax \neq 0$ and $Ax \subseteq \mathfrak{l}$, so that $Ax = \mathfrak{l}$ by the minimality of \mathfrak{l} .

Corollary 10.5. The radical of a commutative Artinian ring equals the subset of its nilpotent elements.

Proof. By Artinianness, the radical is nilpotent. By commutativity, the ideal generated by a nilpotent element is nilpotent, and so contained in the radical. \Box

[t:radartmod]

ss:modoverart

c:commartrad

Theorem 10.6. *M* is semisimple of finite length if and only if it is Artinian and $\Re a d M = 0$.

Proof. A finite length module is Artinian (and Noetherian); the radical of a semisimple module vanishes. Conversely, suppose that M is Artinian and $\Re \mathfrak{ad} M = 0$. Consider, using Artinianness, a smallest element—call it N—of the set of submodules that are written as finite intersections of maximal submodules. (This collection is non-empty, M itself being the intersection of the empty collection.) If $N \neq 0$, choose $0 \neq n \in N$. Since $\Re \mathfrak{ad} M = 0$, there exists a maximal submodule K such that $n \notin K$. Now, adding K to the collection from which we obtained N, we get a contradiction to the minimality of N, since $K \cap N \subseteq N$. This shows N = 0.

In other words, we have shown that there exist finitely many maximal submodules N_1, \ldots, N_k of M such that their intersection is 0. This means $M \hookrightarrow M/N_1 \oplus \cdots \oplus M/N_k$. So M is of finite length and semisimple (since so is $M/N_1 \oplus \cdots \oplus M/N_k$). \Box

We have, as corollories:

- If M is Artinian, then $M/\mathfrak{Rad} M$ is semisimple of finite length.
- A is semisimple if and only if it is Artinian with trivial radical.
- If A is Artinian, $A / \Re \mathfrak{ad} A$ is semisimple.
- A is simple if and only if it is Artinian and its only two sided ideals are 0 and itself.
- The following are equivalent for a commutative ring:
 - it is Artinian and contains no non-trivial nilpotent elements;
 - it is semisimple;
 - it is a finite direct product of fields.
- Let k be a field and A a commutative finite dimensional k-algebra. Assume that $\mathfrak{Rad} A = 0$. Then A is a finite direct product of fields, each of which is a finite extension of k.

10.5. Modules over Artinian rings.

Proposition 10.7. Let A be an Artinian ring and M an A-module. Then the following are equivalent:

- *M* is semisimple.
- $(\mathfrak{Rad} A)M = 0.$
- A_M is semisimple.

Proof. If M is semisimple, then $\mathfrak{Rad} M = 0$; in general, $(\mathfrak{Rad} A)M \subseteq \mathfrak{Rad} M$, so the first implies the second. If A_M is semisimple then of course M is so (being a module for A_M).

The hypothesis that A is Artinian will be used only now. Let $(\Re \mathfrak{ad} A)M = 0$. Then A_M is a quotient of $A/\Re \mathfrak{ad} A$. But $A/\Re \mathfrak{ad} A$ is semisimple, it being Artinian and without radical. Hence so is A_M .

Proposition 10.8. Over an Artinian ring, there exist only finitely many isomorphism classes of simple modules, this number being equal to the number of simple components of $A/\Re a \partial A$.

Proof. Any simple module is a module also for $A/\Re a \partial A$. And $A/\Re a \partial A$ is a semisimple ring.

Proposition 10.9. Let A be a ring admitting a two sided nilpotent ideal \mathfrak{n} such that A/\mathfrak{n} is semisimple (e.g., an Artinian ring). For any A-module, the following conditions are equivalent:

- *M* is of finite length
- M is Artinian
- M is Noetherian

Proof. If M is of finite length then of course it is both Artinian and Noetherian. Now suppose that $\mathfrak{n}^p = 0$ and that M is Artinian (respectively, Noetherian). Consider the filtration $M \supseteq \mathfrak{n} M \supseteq \mathfrak{n}^2 M \supseteq \ldots \supseteq \mathfrak{n}^{p-1} M \supseteq \mathfrak{n}^p M = 0$. The quotients are $M/\mathfrak{n} M$, $\mathfrak{n} M/\mathfrak{n}^2 M$, \ldots , $\mathfrak{n}^{p-1} M/\mathfrak{n}^p M$. These being modules over the semisimple ring A/\mathfrak{n} , they are on the one hand semisimple. On the other, being sub-quotients of M, they are Artinian (respectively, Noetherian). But a semisimple module is of finite length if it is Artinian (or Noetherian). So each of the quotients is of finite length and therefore so is M.

Corollary 10.10. A finitely generated module over an Artinian ring is of finite length. In particular, the ring itself is of finite length. Artinian rings are therefore Noetherian.

Proof. A finitely generated module is Artinian. Now apply the proposition. \Box

10.6. Exercises.

10.6.1. Let A be a ring.

- Let Z be the centre of A. Show that $Z \cap \mathfrak{Rad} A$ is contained in $\mathfrak{Rad} Z$.
- Show that $\mathfrak{Rad} A$ does not contain any non-zero idempotent.

10.6.2. If $\operatorname{\mathfrak{Rad}} M = 0$, then $\operatorname{\mathfrak{Rad}} A_M = 0$.

10.6.3. Let A be a ring such that $A/\mathfrak{Rad} A$ is semisimple. Then for any A-module M, we have $\mathfrak{Rad} M = (\mathfrak{Rad} A)M$. Hint: Observe that $M/(\mathfrak{Rad} A)M$ is a $A/\mathfrak{Rad} A$ -module.

32

p:abynss

p:artsimplemod