
12. Projective modules [s:projective]
The blanket assumptions about the base ring k, the k-algebra A, and A-modules
enumerated at the start of §11 continue to hold.

[ss:localendam]
12.1. Indecomposability of M and the localness of EndA M . In analogy with
the terminology ‘local’ in the commutative case, the algebra A is called local if
A/ Rad A ' k.

[l:local]
Lemma 12.1. A is local if and only if every element of A is either invertible or
nilpotent.

Proof. The latter condition goes down to quotients. In particular it is true for
A/ Rad A which by Wedderburn is a product of matrix algebras over k. If there
is more than one factor, then the element that corresponds to the identity in one
factor and zero elsewhere is neither invertible not nilpotent. So there is only one
factor. Moreover, if this factor is an n× n matrix algebra where n ≥ 2, then it too
has a non-nilpotent non-invertible element, e.g., a diaganal matrix where one of the
diagonal entries is 1 and all others zero.

We claim that the latter condition if it holds for a quotient by a nilpotent two
sided ideal holds also for A. It suffices to prove the claim for the condition holds
for A/ Rad A if A is local, and Rad A is nilpotent.

To prove the claim, suppose that n is nilpotent and that every element of A/n
is either nilpotent or invertible. Let a be an non-nilpotent element of A. Then ā
is non-nilpotent in A/n. Thus we can find b in A such that ba ≡ ab ≡ 1 (mod n).
Writing ab = 1 + x with x ∈ n, we see that ab and therefore a itself has a right
inverse (because x is nilpotent). Similary ba and so a itself has a left inverse. Since
a has both a left inverse and a right inverse, it is invertible. �

[t:local]
Theorem 12.2. A module M is indecomposable if and only if EndA M is local.

Proof. If M = N⊕P , then the projection to N followed by the inclusion of N in M is
an element of EndA M which is neither invertible nor nilpotent. Conversely, suppose
that M is indecomposable and let ϕ be an element of EndA M . For large enough n,
by the Fitting Lemma (see §6.2), kerϕn ⊕ Im ϕn = M . If Im ϕn = M , then ϕn

and therefore ϕ is surjective, and M being Noetherian, this means ϕ is invertible
(see (6.1)). If Im ϕn = 0, then ϕn = 0, which means that ϕ is nilpotent. �

[p:cancel]
Proposition 12.3. If M , U , V are A-modules such that M ⊕ U ' M ⊕ V , then
U ' V .

Proof. This follows from the Krull-Remak-Schmidt theorem (Theorem 6.2). �
[ss:uniserial]

12.2. Uniserial modules.
[p:uniserial]

Proposition 12.4. For a module U , the following are equivalent (U is called unis-

erial if these hold):
(1) U has a unique composition series
(2) the successive quotients in the radical series of U are simple.
(3) the successive quotients in the socle series of U are simple.

Proof. We make a few observations in aid of the proof. Let 0 ( U1 ( . . . ( Un−1 (
U be a composition series. Then U1 ⊆ soc U and Rad U ⊆ Un−1. Moreover, soc U
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is the sum of the U1 and Rad U the intersection of the Un−1, as we vary over all
composition series of U .

Let us now prove that (2) implies (1) by induction on the radical length. Since
U/ Rad U is simple, Rad U = Un−1. By induction, (1) holds for Rad U and so
also for U . The argument that (3) implies (1) is similar. Since soc U is simple,
U1 = soc U . By induction on the socle length, (1) holds for U/U1. So (1) holds also
for U .

Suppose (1) holds. Then, from the observations at the start of this proof,
RadU = Un−1, so U/ Rad U is simple. By induction on the length of U , we see
that the quotients in the radical series for Un−1 = RadU are all simple. Therefore
the same holds for U , and (2) is proved.

The proof that (1) implies (3) is similar to that of (1) implies (2). �
[ss:fp]

12.3. Free modules and projective modules.
[p:free]

Proposition 12.5. An A-module F is free if and only if it has a k-subspace S such
that any linear map from S to an A-module M can be extended to an A-module
morphism from F to M .

Proof. Suppose that F is free with basis {xi}. Take S to be the k-subspace gener-
ated by the xi. Any (set) map from {xi} to M extends uniquely to a k-linear map
of S to M , and to an A-module map from F to M . Conversely, if there exists such
a subspace, then choosing {xi} to be k-basis of S, it is verified readily that F is
freely generated by {xi}. �

[p:projective]
Proposition 12.6. The following conditions are equivalent for an A-module P .12

(We call P projective if these hold.)

(1) Any short exact sequence of A-modules 0→ L→M → P → 0 splits.
(2) The functor M 7→ HomA(P,M) is exact (on finite type A-modules).
(3) If ϕ : M → N is a surjection of A-modules and ϑ : P → N any A-module

map, then there exists a lift ϑ̃ : P →M of ϑ, i,e., ϕϑ̃ = ϑ.
(4) P is a direct summand of a free module.

Proof. (1) ⇒ (4) Any module is a quotient of a free module. Write F � P where
F is free. Now by (1) this splits. Therefore P is a direct summand of F .

(4) ⇒ (3) Let P ⊕ Q be free. Extend ϑ to ϑ′ : P ⊕ Q → N by defining it to
be 0 on Q. Since (3) holds for a free module, we get ϑ̃′ : P ⊕ Q → M such that
ϕϑ̃′ = ϑ′. Set ϑ̃ := ϑ̃′|P .

(3) ⇒ (2) Let 0 → L → M → N → 0 be exact. Then 0 → HomA(P,L) →
HomA(P,M) → HomA(P,N) is exact in general. Since (3) holds the last map is
also onto.

(2) ⇒ (1) 0 → HomA(P,L) → HomA(P,M) → HomA(P, P ) → 0 is exact. But
this means that HomA(P,M)→ HomA(P, P ) is onto. If ϕ : P →M is a preimage
of the identity morphism on P , then ϕ is a splitting. �

[ss:pims]
12.4. Projective indecomposable modules. We will write PIM for a projective
indecomposable A-module.

[t:pimsimple]
Theorem 12.7. Let P be a PIM.

12It is to be understood that all modules appearing are finite dimensional k-vector spaces
(equivalently finite type A-modules), for it is in that context that we will need the proposition.
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(1) P is a direct summand of A.
(2) The quotient P/ Rad P is simple.
(3) The association P 7→ P/ Rad P is a bijection from PIMs to simples.
(4) The multiplicity of P in A equals dimk P/ Rad P .

Proof. (1) This follows by an application of the Krull-Remak-Schmidt theorem
(Theorem 6.2) to the decomposition into indecomposables of P ⊕N ' A⊕n. (Why

can we take n to be finite? Because a finitely generated projective module can be realized as a

direct summand of a free module of finite rank.)

(2) P/ Rad P being semisimple, it suffices to show that it is indecomposable, for
which it in turn suffices to show that the ring EndA(P/ Rad P ) contains no non-
invertible non-nilpotent elements (the projection to a component in a non-trivial
decomposition, if one were to exist, being such an element). In turn it suffices to
find a ring with the above property that maps onto EndA (P/ Rad P ). We show
that EndA P is such a ring.

Since P is indecomposable, the ring EndA P has the above property (this follows
from Fitting’s lemma: see Theorem 12.2). On the other hand, since RadP is
a characteristic submodule, there is a natural map EndA P → EndA (P/ Rad P ).
Since P is projective, this map is surjective.
(3) Let A = P1 ⊕ · · · ⊕ Pm be a decomposition of A into indecomposables. Each
Pi occurring here is a PIM, and each PIM must occur here as a Pi by (1). Since
radicals of direct sums are direct sums of radicals, RadA = Rad P1⊕ · · · ⊕RadPm

and A/ Rad A = P1/ Rad P1⊕· · ·⊕Pm/ Rad Pm. By (2) this is a decomposition into
simples of A/ Rad A. Since every simple module must occur in this decomposition,
it follows that every simple module arises as Q/ RadQ for some PIM Q.

Suppose that π : P/ Rad P → Q/Rad Q is an isomorphism for some PIM Q. Let
σ : Q/ RadQ→ P/ Rad P be its inverse. By the projectivity of P (respectively Q),
we get a lift π̃ : P → Q of π (respectively σ̃ : Q→ P of σ). Consider the elements
σ̃π̃ and π̃σ̃ of EndA P and EndA Q. By the indecomposability of P (respectively Q),
the former (respectively the latter) is either invertible or nilpotent (Theorem 12.2).
But since their images in EndA (P/ RadP ) and EndA (Q/Rad Q) respectively are
invertible, they are both invertible. Thus π̃ is an injection (since σ̃π̃ is) and a
surjection (since π̃σ̃ is), so a bijection.
(4) Write A = ⊕Qm(Q) be a decomposition of A into PIMs, the sum being over dis-
tinct isomorphism classes and m(Q) being the mulitplicities. By (3), A/ Rad A =
⊕(Q/ RadQ)m(Q) is a decomposition into simples, (Q/Rad Q)m(Q) being the iso-
typic components. The multiplicity m(Q) thus equals dimk (Q/Rad Q) (Theo-
rem 9.4 (1)). �

[l:pimind]
Lemma 12.8. Let P be a PIM and U be any module such that U/ Rad U '
P/ Rad P . Then U is a homomorphic image of P .

Proof. Let π : P/ Rad P → U/ Rad U be an isomorphism. By the projectivity of P ,
we can get a lift π̃ : P → U of π. Since π is a surjection, we have π̃P +Rad U = U ,
which by Nakayama (§10.2) implies π̃P = U . �

[ss:indecompkg]
12.5. The case of group algebras. We make two observations:

• The restriction to kH of a projective kG-module P is kH-projective. (It is

enough to show that kG is a free kH-module. But this is obvious: a set of right

coset representatives of H form a basis for kG over kH.)
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• If P is a projective kG-module, then dimk P ≥ pa, where pa is the order of
a p-sylow subgroup of G. (By the preivous item, the restriction to a sylow p-

subgroup H of a projective module is projective. So the restriction is a direct sum

of indecomposable projectives. But there is only one PIM for kH (Theorem 12.7),

for the trivial module is its only simple module: namely, kH itself.)
[l:npsylow]

Lemma 12.9. Let R be a normal p-sylow subgroup of G. For a kG-module U , its
radical equals the radical of its restriction to R: Rad U = Rad (U |R). If R is cyclic
with generator x, then Rad U = (1− x)U .

Proof. The restriction of U/ RadU to kR is semisimple by Clifford (Theorem 11.5),
so Rad (U |R) ⊆ Rad U . On the other hand, Rad (U |R) is a kG-module. Indeed, for
u ∈ U , r ∈ R, and g ∈ G, we have rgu = g(g−1rg)u, so that (gU)|R is the twist of
U |R by the automorphism r 7→ g−1rg. Since the radical is invariant under twists,
we conclude that g Rad (U |R) = Rad (U |R), so Rad (U |R) is a kG-module.

The restriction to kR of the kG-module U/ Rad (U |R) is semisimple. Since
R is a p-group, and simple modules for p-groups are trivial, the action of G on
U/ Rad (U |R) descends to G/R. Since G/R is a group of order coprime to p,
U/ Rad (U |R) is semisimple as a kG-module. So RadU ⊆ Rad (U |R).

As for the second assertion, Rad U = Rad (U |R) by the first part. We have
Rad (U |R) = (Rad kR)U (see §11), and Rad kR = (1− x)kR. �

[ss:duality]
12.6. Duality. We take A = kG throughout this section. The dual (as a k-vector
space) of a kG-module V is a kG-module: (gf)(v) := f(g−1v). We have a natural
isomorphism V ' V ∗∗ since, by our blanket assumptions on modules, V is finite
dimensional over k. Dualization commutes with the operation of taking finite direct
sums.

[l:dualsimple]
Lemma 12.10. V is simple if and only if so is V ∗.

Proof. If W ⊆ V , then there is a natural surjection W ∗ � V ∗. So V is simple if
V ∗ is. Conversely, if V simple, then so is V ∗∗ (because V ' V ∗∗), and, V ∗∗ being
the same as (V ∗)∗, it follows from the first part that V ∗ simple. �

[i:simpledual]
(1) Duals of semisimple modules are semisimple, of indecomposables indecom-

posable. We have:

soc (M∗) = (M/Rad M)∗ M∗/ Rad (M∗) = (soc M)∗.

(2) Duality induces an involution S 7→ S∗ (possibly the identity) on simple
modules.

We will presently show that duals of free modules are free (Lemma 12.11). It will
follow that duals of projectives are projective (Corollary 12.12). Assuming this for
the moment, we have:[i:pimdual]

(3) The dual of a PIM is a PIM. Duality induces an involution P 7→ P ∗ on
PIMs.

(4) The socle of a PIM P is simple. Indeed soc P ' (P ∗/ Rad P ∗)∗, and P ∗ is
a PIM. Now use Theorem 12.7 (2).[i:pimsoc]

(5) The mapping P 7→ soc P from PIMs to simples is a bijection. Indeed it is
the composition P 7→ P ∗ 7→ P ∗/ RadP ∗ 7→ (P ∗/ Rad P ∗)∗ of the bijections
in (3), Theorem 12.7, and (1).
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(6) The two bijections P 7→ P/ Rad P and P 7→ soc P from PIMs to simples
(of Theorem 12.7 (2) and item (5) above) are the same, for as we will show
P/ RadP ' soc P for a PIM P (Theorem 12.15). [i:multsoc]

(7) The number m of times a PIM P appears in the decomposition into in-
decomposables of kG equals dim soc P . This follows from the bijection
P/ RadP ' soc P of Theorem 12.15 below, but it can be deduced more
easily as follows. Since kG ' kG∗ by Lemma 12.11 below, m equals the
corresponding the number for the PIM P ∗. Now, by Theorem 12.7 (4),
m = dim(P ∗/ RadP ∗). But P ∗/ Rad P ∗ ' (soc P )∗.

[l:dualkG]
Lemma 12.11. kG ' kG∗ as a kG-module.

Proof. Let δg be the element of kG∗ defined by δg(h) := δg,h for h ∈ G ⊆ kG,
where δg,h is the Kronecker-delta function. Extend the association g ↔ δg to a
linear isomorphism kG ↔ kG∗. We claim that this is a kG-module isomorphism.
Indeed, δxg(h) = δxg,h = δg,x−1h = δg(x−1h) = (xδg)(h). �

[c:dualkG]
Corollary 12.12. Let M be a kG-module.

(1) It is free if and only if its dual is free.
(2) It can be imbedded in a free module.
(3) It is projective if and only if its dual is projective.

Proof. (1): Since any module is naturally identified with its double dual, M '
(kG)⊕n ⇔ M∗ ' (kG⊕n)∗. Since dualization commutes with taking (finite) direct
sums, M∗ ' (kG⊕n)∗ ⇔ M∗ ' (kG∗)⊕n. By the lemma, M∗ ' (kG∗)⊕n ⇔ M '
kG⊕n.

(2): Choose a surjection F � M∗ with F free. Dualizing we get M ↪→ F ∗. But
F ∗ is free by (1).

(3): If M ⊕ N is free then, by (1), so is its dual M∗ ⊕ N∗. This proves the
‘only if’ part, applying which we get: M∗∗ is projective if M∗ is so. But M∗∗ 'M
naturally, which proves the ‘if’ part too. �

[c:injective]
Corollary 12.13. The following conditions are equivalent for a kG-module I. A
projective module satisfies these conditions and any module satisfying these condi-
tions is projective.

(1) Any short exact sequence of A-modules 0→ I →M → N → 0 splits.
(2) The functor M 7→ HomA(M, I) is exact.
(3) If ϕ : L → M is a injection of A-modules and ϑ : L → I any A-module

map, then there exists an extension ϑ̃ : M → I of ϑ, i,e., ϑ̃ϕ = ϑ.

Proof. (3)⇒ (2): Let 0→ L→ M → N → 0 be exact. Then 0→ HomA(N, I)→
HomA(M, I)→ HomA(L, I) is exact in general. Since (3) holds the last map is also
onto.

(2) ⇒ (1): 0 → HomA(N, I) → HomA(M, I) → HomA(I, I) → 0 is exact. But
this means that HomA(M, I)→ HomA(I, I) is onto. If ϕ : M → I is a preimage of
the identity morphism on I, then ϕ is a splitting.

(1)⇒ I is projective: By item (2) of the previous Corollary 12.12, we can choose
I ↪→ F with F free. Since this splits, I is a direct summand of F , and so projective.

I is projective ⇒ (3): By (3) of the previous Corollary 12.12, I∗ is projective.
Dualizing ϕ and ϑ, we get ϕ∗ : L∗ ← M∗ a surjection and ϑ∗ : L∗ ← I∗. Since I∗

is projective, there exist ϑ̃∗ : M∗ ← I∗ such that ϕ∗ϑ̃∗ = ϑ∗. The dual ϑ̃∗
∗

of ϑ̃∗

has the desired property. �
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[sss:form] 12.6.1. The bilinear form. On kG we have a bilinear form: for g, h in G we define
(g, h) to be 1 if gh = 1 and 0 otherwise. This form is symmetric, i.e., (a, b) = (b, a)
(for, clearly, (g, h) = (h, g)), and associative, i.e., (a, bc) = (ab, c) (for, clearly
(g, hk) = (gh, k)).

Another description of the form is as follows: (a, b) is the coefficient of the
identity element of G when the product ab is expressed as a linear combination of
elements of G with coefficients in k. The symmetry of the form now says that this
coefficient is the same for ab and ba.

As a corollary of the existence of this form, we have:
[p:form]

Proposition 12.14. Let r be a right ideal and a an element of the group ring kG.
If ra = 0, then ar = 0.

Proof. Suppose that ar 6= 0 for some r ∈ r. Then ar =
∑

αgg with αg 6= 0 for
some g in G. Then (a, rg−1) 6= 0, and by symmetry (rg−1, a) 6= 0. But, on the
other hand, rg−1a belongs to ra and is therefore 0. �

[t:pimradsoc]
Theorem 12.15. For P a PIM for kG, we have P/ RadP ' soc P .

Proof. Set S := P/ RadP , T := soc P , and assume, by way of contradiction, that
S 6' T . We know that S is simple (Theorem 12.7 (1)), and so is T (see the itemized
list at the beginning of this subsection).

Let s be the S-isotypic component of soc kG. Decomposing kG into indecom-
posables, write kG = Q ⊕ R, where Q is the sum of all PIMs isomorphic to P ,
and R the sum of the rest. We make some observations about s and its relation
to Q and R. Given the observations, it will be easy to derive a contradiction using
Proposition 12.14.

• s 6= 0: Indeed, S occurs as the socle of some PIM: see (5) of the itemized
list at the beginning of this subsection.13

• s is a two sided ideal: Indeed, it is a characteristic left ideal of kG.
• s ⊆ R: Indeed, soc kG = soc Q⊕ soc R, and soc Q is isotypic of type T .
• sQ = 0: Indeed, on the one hand, by the previous two observations, sQ ⊆

s ⊆ R; on the other, sQ ⊆ Q since Q is a left ideal. But Q ∩R = 0.
• Rs = 0: Indeed, kG-endomporphisms of kG with images in s are precisely

right multiplications by elements of s. Any such endomorphism restricted
to R factors through R/ Rad R (since s is semisimple), but the S-length of
R/ Rad R is 0 (for P is the only PIM such that P/ RadP ' S).

Now, Proposition 12.14 together with the fact sQ = 0 yields Qs = 0. In turn, this
together with the fact Rs = 0 yields s = (kG)s = (Q+R)s = 0, a contradiction. �

[ss:tensor]
12.7. Tensor Products. As in §12.6 we take A = kG throughout this subsection.
The tensor product (over k) of two kG-modules is defined: g(v ⊗ w) := gv ⊗ gw.
The standard natural isomorphisms as k-vector spaces hold also as kG-modules:
e.g., U ⊗ (V ⊗W ) = (U ⊗ V ) ⊗W . Some of these, e.g., Hom(V,W ) ' V ∗ ⊗W ,
require the assumption that V is finite dimensional over k, which anyway we are
imposing blanketly.

13In fact, although we don’t need this stronger statement for the proof, the length of s equals
dim S: see (7) of the itemized list at the beginning of this subsection.
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A kG-module V is G-faithful if the defining group homomorphism G → GLk V
is an injection. (Caution: The algebra map kG→ Endk(V ) could have non-trivial kernel

for a G-faithful V .)
[t:galois]

Theorem 12.16. Let V be a G-faithful kG-module. Then given a PIM P there
exists an n such that P occurs as an indecomposable component of V ⊗n.

Proof. Let k[V ] denote the symmetric algebra of V . Its graded components k[V ]j
are kG-modules. We claim that there is a copy of the left regular representation kG
in

∑
0≤j≤d k[V ]j for d large enough. Let us first finish the proof of the theorem

assuming the claim.
Since P ⊆ kG, we have P ⊆

∑
0≤j≤d k[V ]j . Since P is ‘injective’ (see Corol-

lary 12.13), it follows that P is a direct summand of
∑

0≤j≤d k[V ]j . By Krull-
Remak-Schmidt, P occurs an indecomposable summand of k[V ]j for some j, 0 ≤
j ≤ d. Since k[V ]j is a quotient of V ⊗n, it follows that V ⊗n surjects onto P . Since
P is projective, it follows that P is a direct summand of V ⊗n, proving the theorem.

It remains therefore only to prove the claim. Consider the quotient field k(V ) of
k[V ]. The group G acts on k(V ) by field automorphisms. Let F denote the fixed
field: F := {f ∈ k(V ) | gf = f ∀ g ∈ G}. The extension F ⊆ k(V ) is Galois with
Galois group G. By the normal basis theorem, there exists an element f in k(V )
such that its orbit under G forms a basis of k(V ) over F . Writing f = p/q with
p, q in k[V ] and taking f ′ = f ·

∏
g∈G

gq, we see that the orbit under G of f ′ too
forms a basis for k(V ) over F .

� [ex:lrtwo]
12.8. Exercises. Our blanket assumptions about k, A, and A-modules are in force
(unless explicitly relaxed).

12.8.1. Prove or disprove: any quotient of an indecomposable module is indecom-
posable.

[sss:simproj]
12.8.2. Let S be a simple A-module and P the corresponding PIM. For any A-
module M , the multiplicity of S in a composition series of M equals the dimension
(as a k-vector space) of HomA(P,M).

[sss:pformcounter]
12.8.3. Show by means of an example that Proposition 12.14 does not hold in
general for a finite dimensional algebra over k.

12.8.4. Let P be a projective A-module. Set M := P/ RadP . Then the following
are equivalent:

(1) M is simple.
(2) M is indecomposable.
(3) P is indecomposable.


