
11. Local Representation Theory[s:lr]
We are now going to study Local Representation Theory following Alperin’s book.
Here are the conventions fixed for the rest of the course:

• k an algebraically closed field of prime characteristic p
• A a finite dimensional associative k-algebra with identity
• Modules are all left modules and finite dimensional over k
• G a finite group, kG the group ring with coefficients in k
• When we talk of p-groups, p-subgroups, etc., p refers to the characteristic

of k.

Observe that A is Artinian and that modules have finite length.
Results about A and A-modules established in Alperin’s book are very special

cases of those we have studied from Bourbaki’s Algebra Chapter 8. Here for example
are three equivalent descriptions of the radical of A:

• the smallest submodule of A such that the quotient is semisimple;
• the intersection of the maximal submodules of A;
• the largest nilpotent ideal of A.

The second description is our definition: the radical Rad M of a module M is
defined as the intersection of its maximal proper submodules, and the radical of a
ring as its radical as a (left) module over itself. The first description follows from
an item in the list of observations in §10.2: Rad M is the smallest submodule such
that M/Rad M is semisimple. As to the third, the radical of an Artinian ring is
nilpotent (Theorem 10.3); on the other hand, the radical of a ring contains every
nil ideal (left, right, or two-sided)—see the corollaries of Theorem 10.1.

Here are some important observations:

• A/ Rad A is semisimple. Indeed, by the Artinianness of A, Rad A is an inter-

section of finitely many maximal left ideals, say l1, . . . , lk; so A/ Rad A imbeds

into the semisimple module A/l1 ⊕ · · · ⊕A/lk.

• RadM = (Rad A)M . Indeed, Rad M ⊇ (Rad A)M in general (for Rad A kills

any semisimple module, hence M/ Rad M); on the other hand, M/(Rad A)M is

a module for A/ Rad A and therefore semisimple.

• The socle, denoted soc M , of a module M is the largest semisimple submod-
ule: it is the sum of all simple submodules of M . It equals (0 :M Rad A) :=
{m ∈ M | (Rad A)m = 0}. (Indeed, Rad A kills any semisimple module, in

particular the socle. On the other hand, (0 :M Rad A) is a module for A/ Rad A,

and so semisimple.)

[ss:radsocseries]
11.1. The radical and socle series. The radcial series of a module M is this
decreasing sequence of submodules: Rad0 M ⊇ Rad1 M ⊇ Rad2 M . . ., where
Rad0 M := M and Radn M for n > 0 is defined by induction: Radn M :=
Rad (Radn−1 M). It is a strictly decreasing sequence and so is eventually 0. The
least r such that Radr M = 0 is called the radical length of M .

The socle series of a module M is this increasing sequence of submodules:
soc0 M ⊆ soc1 M ⊆ soc2 M . . ., where soc0 M := 0 and, socj M for j > 0 is
defined by induction: it is the submodule of M such that socj M/ socj−1 M =
soc(M/ socj−1 M). It is a strictly increasing sequence and so is eventually M . The
least s such that socs M = M is called the socle length of M .
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• The radical length equals the socle length and is called the Loewy length.
(Indeed, setting J := Rad A, we have, as observed above, Rad M = JM and

soc M = (0 :M J). Thus Radk M = JkM and sock M = (0 :M Jk). Since the

least k such that JkM = 0 is also the least k such that (0 : Jk) = M , the assertion

follows.)

• Denoting by ` the Loewy length of M , we have Radi M ⊆ soc`−i M for
0 ≤ i ≤ `. (Indeed, following the notation and drift of the argument in the

previous item, we have J iM ⊆ (0 :M J`−iM).)

11.2. Group algebras.
[t:kgss]

Theorem 11.1. The group algebra kG is semisimple if and only if p does not
divide the order of the group G.

Proof. The semisimplicity of G in case p does not divide |G| is proved by averaging
(as we have already seen in class). We now show that kG is not semisimple in case
p divides |G|. (For a different proof, see Exercise 11.6.3.) If it were semisimple, it
would follow from Wedderburn structure theory that every simple module occurs in
the left regular representation of kG as many times as the dimension of that module
as a vector space over k. It suffices therefore to show that the trivial module occurs
at least twice.

Let ∆(G) denote the kernel of the natural map from kG to k defined by g 7→ 1
for every g in G. The quotient kG/∆(G) is evidently the trivial module. Let σ
denote the element

∑
g∈G g of kG. Its span is a copy of the trivial module, and

(this is where we use the hypothesis) ∆(G) ⊇ kσ. Thus we have kG ⊇ ∆(G) ⊇
kσ ⊇ 0, which shows that the trivial module occurs at least twice in the left regular
representation. �

[t:brauer1]
Theorem 11.2. (Brauer) The number of simple kG-modules equals the number
of p-regular conjugacy classes (i.e., those in which the order of any element is
coprime to p).

We explore some corollaries before giving the proof of the theorem in §11.5.
[c1:t:brauer1]

Corollary 11.3. The only simple kG-module for G a p-group is the trivial module.

Proof. This is clear from the theorem. We give an independent proof based on
the class equation. Let V be a simple kG-module. Let 0 6= v be an element of V
and consider the Z/pZ-span W of the orbit Gv of v. Then W is a finite G-set
of cardinality a positive power of p. Since 0 is a G-fixed point in W , there is, by
Eq. (1.7), at least one other G-fixed element in W . The k-span of this element is,
on the one hand, a non-zero G-invariant subspace of V and so equals V , and, on
the other, trivial as a kG-module.

Yet another proof can be given using Theorem 11.5. Proceed by induction on |G|.
If |G| > p, then there exists a non-trivial proper normal subgroup N of G. The
restriction of a simple G-module S to N is semisimple by the theorem. By induction,
simple kN -modules are trivial, so S|N is trivial. Thus S is a k(G/N)-module. But
since |G/N | < |G|, another application of the induction hypothesis shows that S is
trivial. The case G = Z/pZ needs to be handled separately, but that is easily done:
by commutativity, simple modules are 1-dimensional (Corollary 8.3), and the only
root in k of xp − 1 is 1. �
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[c2:t:brauer1]
Corollary 11.4. Let G be cyclic of order n. Write n = per with (p, r) = 1. Then
the number of isomorphism classes of simple kG-modules is r. The simple modules
are all 1-dimensional.

Proof. G being abelian, the conjugacy classes are all singletons. The order of
x ∈ G is coprime to p if and only if xr = 1. The collection {x ∈ G |xr = 1} has
cardinality r: in fact, it is the subgroup of G of order r. The first assertion now
follows from the theorem. We now produce r distinct 1-dimensional modules, and
this will prove the second assertion. The equation Xr − 1 is separable over k, so it
has r distinct roots over k. Given a root, we can define an algebra homomorphism
kG → k by sending a fixed generator of G to the given root. Varying the roots, we
get r non-isomorphic 1-dimensional kG-modules.

As for the earlier corollary, we give an independent proof of this too. We know
from Corollary 8.3 that the simple modules of kG are all 1-dimensional. Let kG → k
be the homomorphism defining a 1-dimensional module. Let x be the image in k
under this of a generator of G. Then xn = 1. But xn = 1 if and only if xr = 1. Now
argue as in the previous paragraph to get r distinct simple modules corresponding
bijectively to the r distinct roots in k of the equation Xr = 1. �

[ss:sl2p]
11.3. Simple moodules for the group SL(2, p). Let G = SL(2, q), the group of
2× 2 matrices with entries in the field of q = pe elements and determinant 1. Then
the number of simple kG-modules is q. This follows from Theorem 11.2 and the
fact that the number of p-regular conjugacy classes in G is q (Exercise 11.6.2).

Let V be the ‘defining representation’ of G, i.e., E is the vector space of 2 × 1
matrices with entries in k on which G acts by left multiplication. Consider the
action of G on the space Vd of polynomial k-valued functions of degree d on V .
Evidently dimk Vd = d + 1. For 0 ≤ d < p, the kG-modules Vd are simple (Exer-
cise ??).

Thus for G = SL(2, p), the Vd, 0 ≤ d < p, are a complete set of simple kG-
modules.

[ss:clifford1]
11.4. A first contact with Clifford theory. ‘Clifford theory’ relates represen-
tation theory to normal subgroups. The following basic theorem was used to give
an alternative proof of Corollary 11.3.

[t:clifford1]
Theorem 11.5. The restriction to a normal sugbroup N of a semisimple G-module
is semisimple.

Proof. It is enough to show that the restriction of a simple module S is semisimple.
Let W be a kN simple submodule of S. For g ∈ G, consider the subspace gW of S.
The key observation is:

gW is an N -submodule of S. Moreover it is simple.

Since ngw = g(g−1ng)w ∈ gW , it follows that gW is N -invariant, and that, as
an N -module, gW is the pull-back of W via the automorphism n 7→ g−1ng of N
(§1.4.3). This proves the observation.

Now consider
∑

g∈G gW . It is evidently G-invariant, and so equals S (it is non-
zero since W 6= 0). The equation S =

∑
g∈G gW expresses S as a sum of simple

N -modules, so S is semisimple as an N -module. �
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[ss:pf:t:brauer1]
11.5. Proof of Brauer’s Theorem 11.2. Enter the subspaces that are the main
characters in the proof: T := [kG, kG] and S := Rad (kG)+T . We make a series of
observations, Eq. (11.3) being the most crucial of them. The theorem itself follows
immediately from Eqs. (11.2) and (11.4).

(11.1) the number of conjugacy classes in G = the codimension of T in kG.

If x and y are conjugate in G, say x = gxg−1, then

x− y = x− gxg−1 = g−1(gx)− (gx)g−1 ∈ T

so ≥ holds. Now suppose x1, . . . , xk belong to different conjugacy classes in G and
let

∑k
i=1 αixi ≡ 0 (mod T ). Consider the characteristic function ϕ1 the class of x1.

It extends naturally to a linear functional on kG. We observe that it vanishes on T .
Indeed, T is linearly spanned by gh−hg with g, h in G, but gh and hg are conjugate:
gh = h−1(hg)h. Applying ϕ1 to the linear dependence relation, we see that α1 = 0.
Similarly the other coefficients too vanish, and Eq. (11.1) is proved. The proof in
fact shows that classes in kG/T of representatives in G of the conjugacy classes
form a k-basis.

(11.2) the number of distinct simple kG-modules = the codimension of S in kG.

The number of simple kG-modules is the same as the number of simple modules for
A := kG/ Rad (kG). Since A is semisimple, the latter number equals the number r,
where A = A1 × · · · ×Ar is the Wedderburn decomposition of A into a product of
simple algebras. The question now is: how can we probe A and extract r without
troubling ourselves with the full decomposition into simple algebras? Given below
are two ways of doing this.

Each simple algebra Ai being a matrix algebra over k, we have:
• The centre of Mn(k) being the space of scalar matrices, it is 1-dimensional

over k. The centre of A being the product of the centres of the Ai, we
conclude that the centre of A has dimension r over k.

• [Mn(k),Mn(k)] being the space of traceless n×n matrices, the codimension
of [Ai, Ai] in Ai is 1. Since [A,A] = [A1, A1] × · · · × [Ar, Ar], we conclude
that the codimension of [A,A] in A is r.

We use the second characterization of r to finish the proof. Indeed

[A,A] = [
kG

Rad (kG)
,

kG

Rad (kG)
] =

[kG, kG] + Rad (kG)
Rad (kG)

so that
A

[A,A]
' kG

S
,

and Eq. (11.2) is proved.
The next observation is the key to the proof of the theorem:

(11.3) S = {x |xpe

∈ T for some e ≥ 0}
Suppose x belongs to the right hand side. To show x ∈ S, it suffices to do so
modulo Rad (kG), since S ⊇ Rad (kG). Now, S/ Rad (kG) is just the commutator
[kG/ Rad (kG), kG/Rad (kG)]. Thinking of kG/ Rad (kG) as a product of matrix
algebras, we need to show that x has trace 0 as a linear operator on any simple
kG-module. But this is clear since xpe

has trace 0 and Tr (xpe

) = (Trx)pe

.
To prove the other containment, it suffices to prove that the right hand side is a

subspace, for S := T + Rad (kG) and both T , Rad (kG) belong to the right hand
side: the case of T is evident, and Rad (kG) is nilpotent. It is clear that the right
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hand side is closed under scalar multiples. What requires proof is its closure under
addition. For this, we use the following properties of T :

(1) (x + y)p ≡ xp + yp (mod T ) for x, y in kG.
(2) xp ∈ T for x ∈ T .

Let us proceed with the proof of Eq. (11.3) assuming the above properties.We claim:
(3) (x + y)pe ≡ xpe

+ ype

(mod T ) for x, y in kG.
To prove (3), proceed by induction on e, the case e = 1 being (1). By induction
(x + y)pe−1

= xpe−1
+ ype−1

+ t for some t ∈ T , so that (x + y)pe

= ((x + y)pe−1
)p =

(xpe−1
+ yP e−1

+ t)p ≡ xpe

+ ype

+ tp (mod T ), the last equality being justified
by (1). By (2), tp ∈ T , so we are done with the proof of (3).

Now, if xpe

and ypf

are in T , then assuming (without loss of generality) that
e ≥ f , we have ype ∈ T (by (2)) and (x + y)pe ∈ T by (3). This finishes the proof
of Eq. (11.3) except that we still need to prove (1) and (2).

To prove (1), we expand (x+y)p and partition the terms other than xp and yp into
sets of cardinality p, the elements of each set being in the same equivalence class with
respect to cyclic permutation of the factors. For (2), it is enough, by (1), to show
that (xy − yx)p ∈ T for x, y in kG. But, again by (1), (xy − yx)p ≡ (xy)p − (yx)p

(mod T ), and (xy)p − (yx)p = ((xy)p−1x)y) − y((xy)p−1x) ∈ T . The proof of
Eq. (11.3) is now complete.

Our final observation is:

(11.4) the codimension of S in kG = the number of p-regular conjugacy classes

We will show in fact that the images in kG/S of representatives in G of the p-regular
conjugacy classes form a k-basis for kG/S. Images in kG/T of representative of all
classes form a basis for kG/T (by the proof of Eq. (11.1). Since T ⊆ S, it suffices
to prove the following:

(a) If g = us be the ‘Jordan decomposition’ (see Exercise 11.6.7) of g in G,
then g ≡ s (mod S).

(b) images in kG/S of representatives of p-regular classes are linearly indepen-
dent.

To prove (a), observe that (g − s)pe

= ((u − 1)s)pe

= (upe − 1)spe

= 0 (when e
is large enough that upe

= 1). For (b), if xi belong to different p-regular conju-
gacy classes in G and

∑
αixi ≡ 0 (mod S), then (

∑
αixi)pe ≡ 0 (mod T ), and,

by (3) above,
∑

αpe

i xpe

i ≡ 0 (mod T ), but xpe

i belong to distinct conjugacy classes
(Exercise 11.6.8), so by Eq. (11.1), αpe

i = 0, so αi = 0.
The proof of Theorem 11.2 is complete.

11.6. Exercises.

11.6.1. Determine the radical and socle series of the Tn(k)-module Tn(k), where
Tn(k) denotes the ring of lower triangular n× n matrices with entries in k.

[sss:sl2p]
11.6.2. The number of p-regular conjugacy classes in SL(2, q) is q.

[sss:sigmanilp]
11.6.3. Let p divide |G|. Then kσ is a nilpotent two sided ideal of kG, where
σ =

∑
g∈G g.

11.6.4. If G is a p-group, then Rad (kG) = ∆(G) (where ∆(G) is defined to be
the kernel of the map kG → k defining the trivial module).
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11.6.5. If N is a normal subgroup of G, then Rad (kN) = kN ∩Rad (kG).

11.6.6. If N is a normal subgroup of G and T a simple kN -module, then there
exists a simple kG-module S such that T is a direct summand of S|N .

[sss:jd]
11.6.7. For g in G, there is a unique expression11 g = su, with s, u in G, such that

• the order of s is coprime to p, that of u is a power of p;
• s and u commute.

Evidently, s has order r and u order pe, where per, (p, r) = 1, is the order of g.
[sss:pconj]

11.6.8. Let elements x, y of a group be non-conjugate. Let their orders be coprime
to p (where p is a prime). Then xpe

and ype

are non-conjugate (for all e ≥ 0).

11This is the Jordan decomposition when the finite group G is considered as a linear algebraic
group over k.


