2. Groups acting by group automorphisms

2.1. Semi-direct products. Let G be a group acting on a group N by automorphisms: this means that N is a G-set and further that ${ }^{g} n n^{\prime}={ }^{g} n^{g} n^{\prime}$; or, equivalently, that there is a group homomorphism from G into the group of automorphisms of N. From this data we construct now the semi-direct product $N \rtimes G$, which is a group containing both G and N.

As a set it is just the cartesian product $N \times G$, and so a typical element is an ordered pair (n, g). The multiplication is defined by $(n, g)\left(n^{\prime}, g^{\prime}\right):=\left(n^{g} n^{\prime}, g g^{\prime}\right)$. The map $n \mapsto(n, 1)$, respectively $g \mapsto(1, g)$, defines a monomorphism from N, respectively G, into $N \rtimes G$. We identify N and G with their respective images. Their intersection is trivial and they generate the semi-direct product. While N is a normal subgroup (which explains the use of the \rtimes symbol), not so in general G (in fact, not unless the action is trivial). We have the exact sequence:

$$
\begin{equation*}
1 \rightarrow N \rightarrow N \rtimes G \rightarrow G \rightarrow 1 \tag{2.1}
\end{equation*}
$$

The action of G on N that we started out with can be recovered from $N \rtimes G$ as the conjugation action of the subgroup G on the normal subgroup N. On the other hand, suppose we start out with a subgroup G and a normal subgroup N of a big group K; consider the conjugation action of G on N; assume that N and G intersect trivially and that they generate K. Then $K=N G \simeq N \rtimes G$.
2.1.1. An example. Let the group $\mathbb{Z} / 2 \mathbb{Z}$ act on a cyclic group C by ${ }^{y} x:=x^{-1}$, where y is the non-trivial element in $\mathbb{Z} / 2 \mathbb{Z}$ and x is any element of C. The resulting semi-direct product $C \rtimes \mathbb{Z} / 2 \mathbb{Z}$ is the Dihedral group denoted D_{n}, where n is the order of C (the cases $n=\infty$ and $n=1$ are included in these considerations). The action is trivial if $n=1$ or $n=2$: we have $D_{1}=\mathbb{Z} / 2 \mathbb{Z}$ and $D_{2}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

The presentation $\left\langle x, y \mid x^{n}=1, y^{2}=1, y x y^{-1}=x^{-1}\right\rangle$ defines D_{n}, where of course the first relation is understood to be absent when $n=\infty$. Setting $z=x y$ we get another presentation $\left\langle z, y \mid z^{2}=1, y^{2}=1,(z y)^{n}=1\right\rangle$, which leads to the following alternative definition: a dihedral group is a group generated by two involutions. ${ }^{3}$ The subscript n in the notation D_{n} is recovered here as the order of the product of the two involutions.

2.2. Exercises.

2.2.1. Consider the action of a group G on itself by left multiplication. Denote by λ_{G} the image of G under the group homomorphism $\lambda: G \rightarrow \operatorname{Bij} G$ defining the above action. The group of automorphisms Aut G is imbedded naturally as a subgroup in $\operatorname{Bij} G$; it normalizes λ_{G} : ${ }^{\varphi} \lambda_{g}=\lambda_{\varphi(g)}$ for $\varphi \in$ Aut G and $g \in G$. The semi-direct product $\lambda_{G} \rtimes$ Aut G is called the holomorph of G. Compute the holomorph of a cyclic group.
2.2.2. In the definition of the dihedral group in $\S 2.1 .1$, let $n=2 t$ be finite and even, pull the action back to $\mathbb{Z} / 4 \mathbb{Z}$ via the natural epimorphism $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, and consider the semi-direct product $S:=\mathbb{Z} / n \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z}$. Denoting by j a generator of $\mathbb{Z} / 4 \mathbb{Z}$, the centre of S is $\left\{1, x^{t}, j^{2}, x^{t} j^{2}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. The quotient of S by the subgroup $\left\{1, x^{t} i^{2}\right\}$ is the group Q_{t} of generalized quarternions. Its order is $4 t$. Every element of Q_{t} can be written uniquely as $x^{e} j^{f}$ with $0 \leq e<2 t, 0 \leq f \leq 1$. In

[^0]the special case $t=4$, writing, more suggestively, i and -1 in place respectively of x and x^{2}, we see that Q_{4} is the familiar group of order 8 consisting of the quarternions $\pm 1, \pm i, \pm j, \pm k$.

The subgroup $\langle x\rangle$ of Q_{t} is normal and cyclic of order $2 t$ with $Q_{t} /\langle x\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$. But Q_{t} is not a semi-direct product of an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $\mathbb{Z} / 2 t \mathbb{Z}$: indeed any such semi-direct product would have (at least) two involutions (the images of the unique involutions in $\mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 2 t \mathbb{Z})$ but there is only involution in Q_{t}, namely x^{t}.
2.3. Extensions. An exact sequence of groups like

$$
\begin{equation*}
1 \rightarrow N \rightarrow K \rightarrow G \rightarrow 1 \tag{2.2}
\end{equation*}
$$

is called an extension of G by N. We often say loosely that K is an extension (of G by N). Identifying N with its image in K, we consider N to be a subgroup of K. Being the kernel of the group homomorphism $K \rightarrow G$, it is a normal subgroup. The extension is called central if N lies in the centre of K. It is called abelian (respectively, cyclic) if N is abelian (respectively, cyclic).

An extension as above is split if there is a group homomorphism $\varphi: G \rightarrow K$ which when followed by the epimorphism $K \rightarrow G$ gives the identity of G. Such a map φ is called a splitting. The extension (2.1) we get from the semi-direct product construction is split: the map $g \mapsto(1, g)$ is evidently a splitting. Conversely, every split extension arises as the extension (2.1) attached to a semi-direct product. Indeed, let φ be a splitting. Then φ is a monomorphism. Identifying G with its image in K under φ, we consider G to be a subgroup of K. It intersects N trivially and together with N generates the group K. Thus $K \simeq N \rtimes G$. To summarise:

Split extensions are the same as semi-direct products.
It is easy to give examples of non-split extensions:

$$
\begin{align*}
0 \rightarrow p \mathbb{Z} / p^{2} \mathbb{Z} & \subseteq \mathbb{Z} / p^{2} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0 \tag{2.4}\\
0 \rightarrow \mathbb{Z} & \rightarrow \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z} \rightarrow 0 \tag{2.5}\\
1 \rightarrow\langle x\rangle & \rightarrow Q_{t} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 \tag{2.6}
\end{align*}
$$

where $\langle x\rangle$ and Q_{t} in (2.6) are as in $\S 2.2 .2$. It is interesting to formulate criteria under which extensions necessarily split. We state without proof:
Theorem 2.1. (Schur-Zassenhaus) The extension (2.2) splits if the orders of N and G are finite and coprime.

[^0]: ${ }^{3}$ The dictionary meaning of the adjective dihedral is: having or contained by two plane faces. The generating involutions z and y are the reflections in the two plane faces.

