
2. Groups acting by group automorphisms [s:gaut]
2.1. Semi-direct products. Let G be a group acting on a group N by auto-
morphisms: this means that N is a G-set and further that gnn′ = gngn′; or,
equivalently, that there is a group homomorphism from G into the group of auto-
morphisms of N . From this data we construct now the semi-direct product N o G,
which is a group containing both G and N .

As a set it is just the cartesian product N × G, and so a typical element is an
ordered pair (n, g). The multiplication is defined by (n, g)(n′, g′) := (ngn′, gg′).
The map n 7→ (n, 1), respectively g 7→ (1, g), defines a monomorphism from N ,
respectively G, into N o G. We identify N and G with their respective images.
Their intersection is trivial and they generate the semi-direct product. While N is
a normal subgroup (which explains the use of the o symbol), not so in general G
(in fact, not unless the action is trivial). We have the exact sequence:

(2.1) 1 → N → N o G → G → 1

The action of G on N that we started out with can be recovered from N o G as
the conjugation action of the subgroup G on the normal subgroup N . On the other
hand, suppose we start out with a subgroup G and a normal subgroup N of a
big group K; consider the conjugation action of G on N ; assume that N and G
intersect trivially and that they generate K. Then K = NG ' N o G.

[sss:dn]
2.1.1. An example. Let the group Z/2Z act on a cyclic group C by yx := x−1,
where y is the non-trivial element in Z/2Z and x is any element of C. The resulting
semi-direct product C o Z/2Z is the Dihedral group denoted Dn, where n is the
order of C (the cases n = ∞ and n = 1 are included in these considerations). The
action is trivial if n = 1 or n = 2: we have D1 = Z/2Z and D2 = Z/2Z× Z/2Z.

The presentation 〈x, y |xn = 1, y2 = 1, yxy−1 = x−1〉 defines Dn, where of course
the first relation is understood to be absent when n = ∞. Setting z = xy we get
another presentation 〈z, y | z2 = 1, y2 = 1, (zy)n = 1〉, which leads to the following
alternative definition: a dihedral group is a group generated by two involutions.3

The subscript n in the notation Dn is recovered here as the order of the product of
the two involutions.

2.2. Exercises.

2.2.1. Consider the action of a group G on itself by left multiplication. Denote
by λG the image of G under the group homomorphism λ : G → BijG defining
the above action. The group of automorphisms Aut G is imbedded naturally as
a subgroup in BijG; it normalizes λG: ϕλg = λϕ(g) for ϕ ∈ AutG and g ∈ G.
The semi-direct product λG o AutG is called the holomorph of G. Compute the
holomorph of a cyclic group.

[sss:genquart]
2.2.2. In the definition of the dihedral group in §2.1.1, let n = 2t be finite and
even, pull the action back to Z/4Z via the natural epimorphism Z/4Z → Z/2Z, and
consider the semi-direct product S := Z/nZ o Z/4Z. Denoting by j a generator
of Z/4Z, the centre of S is {1, xt, j2, xtj2} ' Z/2Z × Z/2Z. The quotient of S by
the subgroup {1, xti2} is the group Qt of generalized quarternions. Its order is 4t.
Every element of Qt can be written uniquely as xejf with 0 ≤ e < 2t, 0 ≤ f ≤ 1. In

3The dictionary meaning of the adjective dihedral is: having or contained by two plane faces.
The generating involutions z and y are the reflections in the two plane faces.
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the special case t = 4, writing, more suggestively, i and −1 in place respectively of x
and x2, we see that Q4 is the familiar group of order 8 consisting of the quarternions
±1, ±i, ±j, ±k.

The subgroup 〈x〉 of Qt is normal and cyclic of order 2t with Qt/〈x〉 ' Z/2Z.
But Qt is not a semi-direct product of an action of Z/2Z on Z/2tZ: indeed any such
semi-direct product would have (at least) two involutions (the images of the unique
involutions in Z/2Z and Z/2tZ) but there is only involution in Qt, namely xt.

[ss:ext]
2.3. Extensions. An exact sequence of groups like

(2.2) 1 → N → K → G → 1

is called an extension of G by N . We often say loosely that K is an extension (of G
by N). Identifying N with its image in K, we consider N to be a subgroup of K.
Being the kernel of the group homomorphism K → G, it is a normal subgroup.
The extension is called central if N lies in the centre of K. It is called abelian
(respectively, cyclic) if N is abelian (respectively, cyclic).

An extension as above is split if there is a group homomorphism ϕ : G → K which
when followed by the epimorphism K → G gives the identity of G. Such a map
ϕ is called a splitting . The extension (2.1) we get from the semi-direct product
construction is split: the map g 7→ (1, g) is evidently a splitting. Conversely,
every split extension arises as the extension (2.1) attached to a semi-direct product.
Indeed, let ϕ be a splitting. Then ϕ is a monomorphism. Identifying G with its
image in K under ϕ, we consider G to be a subgroup of K. It intersects N trivially
and together with N generates the group K. Thus K ' N o G. To summarise:

(2.3) Split extensions are the same as semi-direct products.

It is easy to give examples of non-split extensions:

0 → pZ/p2Z ⊆ Z/p2Z → Z/pZ → 0(2.4)

0 → Z → R → R/Z → 0(2.5)

1 → 〈x〉 → Qt → Z/2Z → 0(2.6)

where 〈x〉 and Qt in (2.6) are as in §2.2.2. It is interesting to formulate criteria
under which extensions necessarily split. We state without proof:

[t:schurzhaus]
Theorem 2.1. (Schur-Zassenhaus) The extension (2.2) splits if the orders of N
and G are finite and coprime.


