
8. The commutant and bicommutant of a semisimple module (Après

Bourbaki Algebra Chapter 8 §4)
[s:commbicomm]

Throughout this section A denotes a ring, M an A-module, AM the ring of homo-
theties of M (namely the image in EndZ M of A), C the commutant in EndZ M
of A, and B the commutant in EndZ M of C. We call B the bicommutant of M .
Evidently AM ⊆ B.

[ss:bssmod]
8.1. The bicommutant of a semisimple module. Let M be semisimple and
M = ⊕λMλ its direct sum decomposition into isotypic components.

• M is simple (respectively, isotypic) for B if and only if it is so for A.
• The product BM →

∏
λ BMλ

of the natural maps BM → BMλ
(induced by

the inclusion of Mλ as a direct summand) is an isomorphism.
• If M is isotypic of type S (where S is a simple module), then the map

BM → BS (induced by the inclusion of S any which way) is an isomorphism.
[ss:density]

8.2. The density theorem.
[t:density]

Theorem 8.1. (The density theorem) The ring AM of homotheties of a semi-
simple module M is dense in its bicommutant B: given an element of b in B and
a finite sequence x1, . . . , xn of elements of M , there exists an a in A such that
bx1 = ax1, . . . , bxn = axn.

Proof. The module M⊕n is also semisimple. Set x := (x1, . . . , xn). The submodule
Ax of M⊕n is a direct summand (by the semisimplicity assumption) and therefore
stable under the bicommutant of M⊕n (Proposition 5.4). The bicommutant of M⊕n

is however the ring of homotheties when it is considered a B-module (Lemma 5.5).
Thus b ∈ B acting diagonally on M⊕n belongs to the bicommutant. So bx ∈ Ax,
which means there exists a such that bx = ax, and so bx1 = ax1, . . . , bxn = axn. �

We get the following corollaries:
• If M is semisimple and its opposite is finitely generated, then AM = BM .

Indeed, the action of b ∈ BM is determined by its action on the finite
generators of the opposite, but there exists an element a which matches its
action on any finite set of elements.

• Let S1, . . . , Sn be simple A-modules, no two being isomorphic. Assume
that their opposites are finitely generated. Given a1, . . . , an elements in the
rings AS1 , . . . , ASn

of homotheties, there exists a in A such that its image in
ASi is ai for 1 ≤ i ≤ n. (Proof: Let M = S1⊕· · ·⊕Sn. The opposite of M is finitely

generated since each Si has that property and any endomorphism of Si can be lifted

to M . By the previous item, BM = AM . By item (2) in §8.1, BM = BS1 × · · · × BSn .

Since ASj
⊆ BSj

, the result follows.)

[ss:csmod]
8.3. The commutant of a simple module.

[l:schur]
Lemma 8.2. (Schur’s lemma) The commutant of the ring of homotheties of aSchur’s lemma

simple module is a division ring.

The result is easy to prove (and so we omit the proof) but its importance cannot
be overestimated. The following simple observation is useful in combination with
Schur’s lemma (when we have an algebraically closed base field):

22



23

Suppose an algebraically closed field is contained in the centre of a
division ring of finite dimension over it. Then the field equals the
division ring.

[c:abelian]
Corollary 8.3. Let A be a commutative algebra over an algebraically closed field k
of finite dimension (e.g., the group ring over k of a finite abelian group). Any This holds even

when A is just
finitely generated as
a k-algebra (a
version of the Hilbert
Nullstellensatz).

simple A-module is one dimensional as a k-vector space.

Proof. Let M be a simple module. Observe that it must be finite dimensional as
a k-vector space: choosing 0 6= x ∈ M we have Ax = M , and so M is k-linearly
spanned by a1x, . . . , anx, where a1, . . . , an form a k-basis for A. Now, using
Schur lemma and the observation above, we conclude that the commutant of AM

is kM . But A being commutative, this forces AM ⊆ kM , which means that every
k-subspace of M is also an A-submodule. �

[sss:schurdense]
8.3.1. Schur’s lemma and the density theorem. We now draw some conclusions by
combining Schur’s lemma with the density theorem.

[c:l:schur:1]
Corollary 8.4. Let A be an associative k-algebra with identity and M a simple A-
module. Suppose that k is algebraically closed and that M is finite dimensional as a
k-module. Then the ring of homotheties is the full ring of k-endomorphisms of M .

Proof. Apply in turn Schur’s lemma, the observation above, and the density theo-
rem. �

A special case of the above result carries a name:
[t:burnside]

Theorem 8.5. (Burnside) Let G be a group and M a simple G-module over an
algebraically closed field k. Assume that M is finite dimensional over k (this is
automatic if G is finite). Then the image of G in Endk M linearly spans Endk M .

[c:l:schur:2]
Corollary 8.6. Let k be an algebraically closed field and A a k-algebra. Let M1,
. . . , Mn be simple A-modules, no two of which are isomorphic, and all of which are
finite dimensional over k. Given φi ∈ Endk Mi, 1 ≤ i ≤ n, there exists a ∈ A such
that the action of a on Mi is φi.

Proof. This follows from Corollary 8.4 above and the second of the corollaries listed
in §8 of the density theorem. �

[p:srfinite]
Proposition 8.7. Let M be a semisimple A-module and S a simple A-module. Let
D be the commutant of S. Then HomA(S, M) and HomA(M,S) are naturally right
and left D-vector spaces respectively. We have:

• [M : S] = dimD HomA(S, M);
• there is a unique isomorphism T of HomA(M,S) with the dual space of

HomA(S, M) such that T (u)(v) = uv (note: uv ∈ HomA(S, S) =: D).

Proof. If N be the S-isotypic component of M , then naturally HomA(M,S) '
HomA(N,S), HomA(S, M) ' HomA(S, N), and [M : S] = [N : S], so we may
assume that M is isotypic. The first item now follows from Theorem ?? (b).

By the same theorem, that the map T (u)(v) = uv is a bijection from HomA(M,S)
to HomD(HomA(S, M),HomA(S, S)). The latter has a natural left D-space struc-
ture (namely, (λ(t))(v) = λ(t(v))b), and so the bijection is a left D-space isomor-
phism: T (λu)(v) = (λu)v = λ(uv) = λ(T (u)v) = (λ(T (u))v, so T (λu) = λ(T (u)).

Finally, the uniqueness of T is evident. �
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[c:p:srfinite]
Corollary 8.8. With hypothesis as in the proposition above, in order for [M : S]
to be finite, it is necessary and sufficient that dimD HomA(M,S) be finite. In case
the condition is met, then [M : S] = dimD HomA(M,S).


