
5. Commutation (Après Bourbaki Algebra Chapter 8 §1)
[s:abcomm]

Throughout A denotes a ring with identity, M a (left) A-module, and L the ring
EndA M of A-endomorphisms of M . The image of A in EndZ M is denoted AM

and called the ring of homotheties. The ring L of A-endomorphisms is then the
centralizer or commutant in EndZ M of the ring of homotheties. Since L is a subring
of EndZ M by definition, M is naturally an L-module, called the opposite of the
original A-module M .

The centralizer, again in EndZ M , of L is called the bicommutant of M and de-
noted by BM (or just B if the context is clear). Since B too is a subring of EndZ M ,
it follows that M is naturally also a B-module. Clearly AM is a subring of BM .

[ss:proj]
5.1. Projections. An element e of L is a projection if it is an idempotent, i.e.,
e2 = e. Given a projection e, we have

• M = Ker e⊕ Im e;
• if m = m1 + m2 with m1 ∈ Ker e and m2 ∈ Im e, then em2 = m2 (so the

kernel and image of a projection determine it);
• 1− e is a projection with kernel Im e and image Ker e.
• the left ideal Le consists of all endomorphisms that kill Ker e; the right

ideal eL consists of all endomorphisms with image in Im e.
Let N be a submodule. A projection with image N is called a projection on N .

A complement to N is a subspace P such that N ⊕ P = M . We call N a direct
summand if there exists a complement to it. A complement to N determines (and
is detemined by) a projection on N .

A submodule N is a direct summand if and only if every A-homomorphism
from N can be extended to M : indeed, if there is a projection on N , we can extend
homomorphisms from N to M by pre-composing with the projection; conversely,
the extension to M of the identity map of N defines a projection on N .

[sss:orthoidem]
5.1.1. Orthogonal idempotents. A family (ei)i of idempotents in a ring is called or-
thogonal if eiej = 0 for i 6= j. A direct sum decomposition M = ⊕iMi determines a
family of orthogonal idempotents in L, namely (pi) where pi is the projection on Mi

with kernel
∑

j 6=i Mj . Conversely given a family (ei) of orthogonal idempotents of L

with the property that, for every m in M , the number is finite of idempotents ei

such that eim 6= 0, we get a direct sum decomposition: M = ⊕ieiM .
[s:commandbicomm]

5.2. Commutants and bicommutants.[p:commtensor]
Proposition 5.1. Let A and B be algebras over a field k. Let C and D be subal-
gebras of A and B respectively; C ′ and B′ the commutants of C and D respectively
in A and B. Then C ′⊗B′ is the commutant of C⊗D in A⊗B (all tensor products
are over k).

Proof. It is clear that C ′⊗k B′ belongs to the commutant, so we need only show the
other containment. By considering subspaces complementary to C ′ and D′, we see
that C ′⊗D′ is the intersection of C ′⊗B and A⊗D′. Let z =

∑
ai⊗bi belong to the

commutant of C⊗D. We may assume that the bi are linearly independent (over k).
For c in C, we have z(c⊗1)− (c⊗1)z = 0, which yields

∑
(aic−cai)⊗bi = 0. Thus

aic− cai = 0 for all i and c, so the ai belong to C ′. This proves that z ∈ C ′ ⊗ B.
Similarly z ∈ A⊗D′. �

Corollary 5.2. The centre of a tensor product is the tensor product of the centres.
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Proposition 5.3. The commutant of the ring of homotheties of the left (respectively
right) regular representation consists of right (respectively, left) multiplications by
elements of the ring. Thus the ring of homotheties of the regular representation is
its own bicommutant. [s:abcomm]
5.3. Direct summands and Bicommutants. [p:bfactor]
Proposition 5.4. The bicommutant B preserves direct factors. The restriction bN

of the action of an element b in the bicommutant to a direct summand N maps into
the bicommutant of N . An A-module map between direct summands is also a B-
module map.

Proof. Let N be a direct summand. For n ∈ N and b ∈ B, writing π for the
projection of M onto N , we have πbn = bπn = bn, so bn is in N . If ϕ is an A-module
map from N to a direct summand N ′, we have ϕbN = ϕbπ = ϕπb = bϕπ = bN ′ϕ,
so ϕ is a B-map. Setting N ′ = N , we get the second assertion. �

In general the map b 7→ bN from the bicommutant of M to that of a direct sum-
mand N is neither injective nor surjective.

[sss:aisb]
5.3.1. Some modules M for which AM = BM . The following lemma gives a criterion
under which we can deduce AM = BM from the corresponding equality for a
submodule. [l:bfactor]
Lemma 5.5. Let M = N ⊕ P , and suppose that P is a sum of submodules iso-
morphic to quotients of N . Then, the homomorphism b 7→ bN from B to the
bicommutant BN of N is injective. If, furthermore, BN equals the ring AN of
homotheties, then B = AM .

Proof. By the hypothesis, N generates the opposite module M . So any homomor-
phism of the opposite module is determined by its restriction to N . In particular,
bN determines b. So we have on the one hand AM ' AN ⊆ BN and on the other
AM ⊆ BM ↪→ BN . The second assertion should now be clear. �

We conclude that the ring of homotheties equals the bicommutant for
• a free module of finite rank.
• a finitely generated module over a principal ring (because there exists a

sequence of ideals a1 ⊆ . . . ⊆ an such that M ' A/a1 ⊕ · · · ⊕A/an.).
As special cases respectively of the above items we have:

• The centre of a matrix ring over a field consists of the scalar matrices.
• Let u be an endomorphism of a finite dimensional vector space over a field k.

An endomorophism that commutes with all endomorphisms that commute
with u is expressible as a polynomial in u with coefficients in k.

[sss:bdsum]
5.3.2. Bicommutants commute with arbitrary direct sums.

[l:bdsum]
Lemma 5.6. We can consider M as a module for its bicommutant B. Let BM⊕I

denote the ring of homotheties of a direct sum of I copies of the B-module M . Then
BM⊕I is the bicommutant of the ring of homotheties AM⊕I of M⊕I as an A-module.
In particular, the natural map BM⊕I → BMi(' BM ) for any direct summand Mi

(i ∈ I) is a bijection.

Proof. Think of I × I column-finite matrices with entries in L. The centralizer of
these are scalar matrices, scalars being elements of B. �
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[ss:setupcommiso]
5.4. Set up for considering commutation in isotypic modules. We fix an
A-module F and let C denote its commutant. Let R denote the category of right
C-modules and G the category of left A-modules. In the sequel, we will denote by
V and M respectively a typical object R and G.

We define covariant functors S and T between these categories:
• S : R → G by S := · ⊗C F .
• T : G → R by T := HomA(F, ·).

The A-module structure on V ⊗C F is given by a(v ⊗ f) := v ⊗ af ; the C-module
structure on HomA(F,M) is given by (φc)(f) := φ(cf).

We have natural transformations:
• α from the identity functor on R to T ◦ S: αV : V → HomA(F, V ⊗C F )

by α(v) = v ⊗ · , i.e., (α(v))(f) = v ⊗ f .
• β from S ◦ T to the identity functor on G: βM : HomA(F,M)⊗C F → M

by βM (φ⊗ f) := φ(f).
[ss:commiso]

5.5. Commutation in isotypic modules. Let notation be as in the previous sec-
tion. In the situation when F is finitely generated (as an A-module), in particular,
when F is a simple, the operations introduced in the previous section enable us to
express isotypic F -modules and homomorphisms between them in a coordinate free
way, i.e., without using specific decompositions into direct sums of copies of F .

[t:commiso]
Theorem 5.7. Notation is fixed as in the previous section. Assume that F is
finitely generated as an A-module.

(1) Let V be a free C-module with basis (vi)i∈I . Then S(V ) = V ⊗C F is
isotypic of type F , a direct sum of the submodules viC ⊗C F , and the map
αV : V → T ◦ S(V ) is a bijection; for any V ′ in R, the map S(V ′, V ) :
HomC(V ′, V ) → HomA(V ′ ⊗C F, V ⊗C F ) is a bijection.

(2) Conversely, suppose M is isotypic of type F , and let (ui)i∈I be a family of
injective homomorphisms of F into M such that M is a direct sum of its
submodules uiF . Then T (M) = HomA(F,M) is a free C-module with basis
(ui), and the map βM : S ◦ T (M) → M is a bijection; for any M ′ in G,
the map T (M,M ′) : HomA(M,M ′) → HomC(HomA(F,M),HomA(F,M ′))
is a bijection.

Proof: The proof (details of which we omit) is based on the following two obser-
vations:

• For V in R which is free, we have HomA(F, V ⊗C F ) ' V ⊗C HomA(F, F )
(by the finite generation of F ), and then V ⊗C HomA(F, F ) = V ⊗C C ' V .

• Let P be in R, Q and R in G. Assume that Q has the structure of a left
C-module too and that the actions of A and C commute. Then we have,
by ‘Hom-tensor adjointness’:

HomA(P ⊗C Q,R) ' HomC(P,HomA(Q,R))

Remark 5.8. In the above theorem, we could omit the hypothesis that F is finitely
generated, but in its place restrict ourselves to free finitely generated modules over C
on the one hand and finite direct sums of copies of F on the other.
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[c:1:t:commiso]
Corollary 5.9. Let F be finitely generated and V be a free C-module. Then the
rings EndC(V ) and EndA(V ⊗c F ) are isomorphic.

[c:2:t:commiso]
Corollary 5.10. Let F be finitely generated and M be isotypic of type F . Then
the rings EndA(M) and EndC(HomA(F,M)) are isomorphic.

If M is a finite direct sum of n copies of F , then EndA(F ) is isomorphic to the
ring Mn(C) of n× n matrices with entries in the ring C.

[c:3:t:commiso]
Corollary 5.11. Let M be isotpyic of type F , and let V = HomA(F,M). Suppose
that F is finitely generated and identify M with V ⊗C F via βM . Then the direct
factors V ′ of V that are free C-modules, and the direct factors M ′ of M that are
F -isotypic are in bijective correspondence by the formulas M ′ = V ′ ⊗C F and
V ′ = HomA(F,M ′).

[x:comm]
5.6. Exercises.

5.6.1. L. et M be a vector space over a division ring D of finite dimension d. Then
the commutant C := EndD M is isomorphic to the ring Md(Dopp) of d×d matrices
with entries in Dopp.


