
6. Artinian and Noetherian modules[s:anmod]

[ss:anmoddef] 6.1. Definitions and elementary properties. A module is Artinian (respec-
tively Noetherian) if it satisfies either of the following equivalent conditions:

• every non-empty collection of submodules contains a minimal (repsectively
maximal) element with respect to inclusion.

• any descending (respectively ascending) chain of submodules stabilises.
A module is Artinian (respectively Noetherian) if and only if it is so over its ring
of homotheties.

An infinite direct sum of non-zero modules is neither Artinian nor Noetherian.
A vector space is Artinian (respectively Noetherian) if and only if its dimension is
finite.

We now list some elementary facts about Artinian and Noetherian modules. The
following would continue to be true if we replaced ‘Artinian’ by ‘Noetherian’:

• Submodules and quotient modules of Artinian modules are Artinian.
• If a submodule N of a module M and the quotient M/N by it are Artinian,

then so is M .
• A finite direct sum is Artinian if and only if each of the summands is so.

A comment about the simultaneous presence of the both conditions:
• A module is both Artinian and Noetherian if and only if it has finite length.

Pertaining to the Noetherian condition alone, we make two more observations:
• Any subset S of a Noetherian module contains a finite subset that generates

the same submodule as S.
• A module is Noetherian if and only if every submodule of it is finitely

generated.
[s:fittingkrs]

6.2. Decomposition into indecomposables of a finite length module. Let
u be an endomorphism of a module M . We have

0 ⊆ Keru ⊆ Keru2 ⊆ Keru3 ⊆ . . .

M ⊇ Im u ⊇ Im u2 ⊇ Im u3 ⊇ . . .

Suppose that the ascending chain above stabilises (e.g., when M is Noetherian),
say Ker un = Ker un+1. Then Kerun ∩ Im un = 0. Indeed if and unx = 0 and
x = uny, then u2ny = 0, so y ∈ Keru2n = Kerun and x = uny = 0. If u were
also surjective, then so would be un, which means Im un = M , and so Kerun = 0,
which means un (and so also u) is injective. Thus:

(6.1) A surjective endomorphism of a Noetherian module is bijective.

Suppose that the descending chain above stablises (e.g., when M is Artinian),
say Im un = Im un+1. Then M = Kerun + Im un. Indeed, for x ∈ M , choosing y
such that unx = u2ny, we have x = (x− uny) + uny. If u were also injective, then
so would be un, which means Kerun = 0, so M = Im un, which means un (and so
also u) in surjective. Thus:

(6.2) An injective endomorphism of an Artinian module is bijective.

Suppose now that M is of finite length (equivalently, both Noetherian and Ar-
tinian). Then the above considerations show that for sufficiently large n we have a

14



15

direct sum decomposition

(6.3) M = Kerun ⊕ Im un

If M were also indecomposable, then either Kerun = M , in which case u is nilpo-
tent, or Kerun = 0 and Im un = M , in which case un (and so also u) is invertible,
which proves the first half of the following

[p:local]
Proposition 6.1. The non-invertible endomorphisms of an indecomposable mod-
ule M of finite length are nilpotent and form a two sided ideal.

Proof. The first half having already been proved, we need only prove the second
half. For a nilpotent endomorphism u, and ϕ any endomorphism, ϕu and uϕ are
non-invertible, and so nilpotent. Now suppose u and v are nilpotent endomor-
phisms. Suppose u + v is not nilpotent. Then it is invertible. Let ϕ be such that
ϕ(u+v) = 1. Writing ϕu = 1−ϕv, we observe that ϕu is on the one hand nilpotent
and on the other invertible. �

[t:krs]
Theorem 6.2. A module of finite length is a finite direct sum of indecomposable
submodules. Further, any two such decompositions with no trivial factors are the Krull-Remak-

Schmittsame, i.e., the components are respectively isomorphic after a permutation.

Proof. The decomposition into a finite direct sum of indecomposable submodules
follows easily by an induction on the length. We will now prove the uniqueness.
Suppose ⊕m

i=1Mi and ⊕m′

i′=1M
′
i′ are two such decompositions of a module M . We

prove the following claim by induction and that will suffice:
for 0 ≤ j ≤ m there exists an automorphism αj of M such that,
after a possible rearrangement of the Mi, we have αjM

′
k = Mk for

1 ≤ k ≤ j.
The base case of the induction (j = 0) is vacuous: we can take α0 to be the identity.
Now, assuming the statement for some j − 1 < k, we will prove it for j. Writing
αj−1M

′
i′ =: M ′′

i′ , consider the decomposition ⊕m′

i′=1M
′′
i′ . We have M ′′

k = Mk for
1 ≤ k < j.

Let pk, p′k, and p′′k denote respectively the projection onto Mk, M ′
k, and M ′′

k with
respect to the respective decompositions. The restriction to M ′′

j of the projection p′′j
is of course the identity but it also equals

∑
k p′′j pk. By the previous proposition,

there exists a 1 ≤ k ≤ n such that p′′j pk is an automorphism of M ′′
j . We claim that

j ≤ k. Indeed, if k < j, then, since pkM ′′
j ⊆ Mk = M ′′

k , we have p′′j pkM ′′
j = 0, a

contradiction, and the claim is proved.
After a rearrangement of the Mk if necessary, we can take k = j. The auto-

morphism αj is now defined as ϕαj−1 where ϕ is the endomorphism of M that is
identity on all M ′′

l except l = j and is pj on M ′′
j : ϕ := 1 − p′′j + pkp′′j . We claim

that ϕ is injective. It follows from the claim and what has been said earlier in this
subsection that ϕ is bijective and that αj is an automorphism. To prove the claim,
suppose that ϕx = 0. Write x − p′′j x = −pkp′′j x ∈ Mk; we see that p′′j pkp′′j x = 0
since p′′j clearly kills the left side. But p′′j pk being an automorphism of M ′′

j , we
conclude that p′′j x = 0, so 0 = ϕx = x, and the claim is proved.

It remains only to show that αjM
′
k = Mk for 1 ≤ k ≤ j. This is evident for

k < j: indeed, ϕαj−1M
′
k = ϕM ′′

k = M ′′
k = Mk. We now prove αjM

′
j = Mj .

Since αjM
′
j = ϕM ′′

j ⊆ Mj , it follows that Mj = ϕM ′′
j ⊕ (Mj ∩

∑
k 6=j ϕM ′′

k ), so
Mj = ϕM ′′

j = αjM
′
j by the indecomposability of Mj . �
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[ss:anrings]
6.3. Artinian and Noetherian rings. A ring is left Artinian (respectively left
Noetherian) if it is so as a left module over itself. Right Artinian and right Noether-
ian rings are similarly defined. We will omit the adjective ‘left’ and just say Artinian
(respectively Noetherian) to mean left Artinian (respectively left Noetherian).7

• If A contains a subring (with unity) which is a division ring, and if A is
finite dimensional as a left module over the division ring, then A is Artinian
and Noetherian.

• A principal ideal ring is Noetherian.
• We will see later than Artinian rings are Noetherian. So, if a ring is Ar-Artinian rings

are
Noetherian.

tinian, then AA has finite length, called the left length (just length if A is
commutative).

[p:anring]
Proposition 6.3. Let M be a faithful A-module whose opposite is finitely generated,
say by {m1, . . . ,mn}. Then the map a 7→ (am1, . . . , amn) defines an injection of
A-modules from AA into M⊕n.

Proof. The map is clearly A-linear. If am1 = . . . = amn = 0, then since the mi

generate the opposite M , it follows that aM = 0, so a = 0 by faithfulness. �

The following properties are elementary to prove. They are stated for Artinian
rings but the corresponding statements hold also for Noetherian rings.

• A finite direct product of Artinian rings is Artinian.
• A quotient of an Artinian ring (by a two sided ideal) is Artinian.
• A finitely generated module over an Artinian ring is Artinian.
• A ring is Artinian if it admits a faithful Artinian module whose opposite is

fintiely generated. (This follows from the proposition above.)
The following statement is made only for Noetherian rings:

• A commutative ring that admits a faithful Noetherian module is Noether-
ian.

7There are rings that are left Artinian but not right Artinian. Similarly for Noetherian.


