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Tensor products of finite and infinite
dimensional representations of
semisimple Lie groups

By GREGG ZUCKERMAN*

I.M. Gelfand and V.A. Ponomarev initiated in [4] (see also [5], [6]) the
study of the category of Harish-Chandra modules over a real semisimple
Lie algebra equipped with a Cartan involution. In this paper we prove some
very general theorems about tensor products of finite dimensional modules
with Harish-Chandra modules. These theorems yield new structural infor-
mation about the category of Harish-Chandra modules, as well as new
information on the classification, construction, and properties of the infinite
dimensional irreducible Harish-Chandra modules.

We study the Harish-Chandra modules associated to a connected semi-
simple Lie group G having finite center. We let g, be the Lie algebra of G,
and f, be the Lie algebra of a maximal compact subgroup K in G. Let S be
the (complex) universal enveloping algebra of g,. Lepowsky has defined in
[21] the notion of a compatible (8, K)-module (see Section 2 for the exact
definition). By definition, a Harish-Chandra (S, K)-module is finitely generated
over G and has each K-isotypic subspace finite dimensional. Let @ = @S, K)
be the category of Harish-Chandra modules.

Irreducible modules in @ arise from irreducible quasisimple continuous
representations of G on Banach spaces (see [7], [8]). More general modules
in @ arise from inducing irreducible finite dimensional representations of a
parabolic subgroup of G. Gelfand and Ponomarev [5] classify all Harish-
Chandra modules over the Lie algebra of the Lorentz group. An analogous
classification for a general G appears to be impossible [6]. Nevertheless, our
results demonstrate a kind of periodicity (clearly visible in the results of
[5]) in the category @ (see Theorem 1.2, part @).

This periodicity has many applications. Lemma 5.4 below has already
proven to be of crucial importance in various investigations of the discrete
series of square-integrable representations of G (see [18], [26], [28]). This
lemma, in combination with Theorem 1.3 below, now leads to the simplest
and most efficient construction and characterization of the so-called “limits”
of discrete series (see Theorem 5.7), which have turned out to be essential
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296 GREGG ZUCKERMAN

ingredients in the recently announced [19] classification of the irreducible
tempered representations of G.

For other work on tensor products see [17], [20], and [22].

1. Periodicity

We describe in this section our basic constructions and results in func-
torial terms. Let F' be a finite dimensional irreducible g, module. We will
assume (by passing to a finite covering group of G) that any such F lifts to
a representationof G. If Ae®,s0is AR F (i.e. AQ:F € ®) (see Lemma 2.1).
( )® F is an exact functor on the abelian category @. Let Z be the center
of § and let X be a character of Z, i.e. A€ Hom (3, C). We can define a pro-
jection functor p; from @ to @: for A €@, p;A is the maximal submodule of
A on which z — \(2) - 1 is nilpotent for every ze€ Z. By Lemma 2.2, p, is an
exact functor; moreover, for A € @ we have A = @, p;4, where the sum is
actually finite. We can decompose @ into subcategories @; = p,@ (see [4]).

It makes sense now to decompose ( ) ® F' via the projections p;: i.e. we
can form the composite functors p; o[( ) & F]e p,,, with A, and \, characters
of Z. Our main results concern certain of these composites.

We need an explicit parameterization of Hom(Z, C). Let g be the com-
plexification of g, and ¥) any Cartan subalgebra in g. Let §* be the dual of
), and W be the Weyl group of (5, g). Let €, be a closed Weyl chamber in
the real span of the roots of (9, g). By the Harish-Chandra homomorphism
[10], Z can be identified with a particular fundamental domain € for the
action of W on H* (see Def. 2.3). The closure of € is a tube over €,.

Welet W(\) be the stabilizer in W of A € €; \ is regular if W()\) is trivial;
interior points of € are regular. Boundary points of €, are singular.

We denote by g the highest weight in €, of the finite dimensional module
F, and we write F' = F'*. The module contragredient to F* has lowest
weight —x¢ and will be denoted F_,. A form pe €, arises from some F' if
and only if p is integral with respect to the simple coroots that define the
walls of €,.

Definition 1.1. For €€ and p integral in €, let

a) Phin = Dpyp© [( )X F‘u] ° Pa.

b) ¥it* = p;o[( ) Q F_,]o Drie

THEOREM 1.2. Given N and pt as in the definition:

© IfAe@, and ¢} A =0, then A =0.

®@ If WIN + p) = W(N), @i, restricts to an isomorphism of @, with
Qi V18 @ matural inverse, in the sense that o is naturally isomorphic
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(see [23]) to the identity functor on @,, and @i 1s naturally isomorphic to
the identity functor on @, .. If A €@, is irreducible, ¢}, . A is irreducible.
If Be@,,, is irreducible, ¥i"*B is irreducible.

It can happen that for nonzero Be@®;,,, vi™B = 0 (in this case, \ is
necessarily singular). Nevertheless, we have some control over . Any
Harish-Chandra module A has a composition series of finite length [(A)
depending only on A (see [21]). We say that A €@ is primary, or that A4 is
a multiple of an irreducible module, if all the composition factors of A are
mutually equivalent (4 need not be completely reducible). The module “0”
is certainly primary. '

THEOREM 1.3. @ + maps primary modules to primary modules.

@ Given an trreducible module A € @;: every composition factor B of
@i, A must map under it to a multiple of A; in particular, at least one
composition factor B, of pA maps to a nonzero multiple of A.

® Conversely, if an irreducible module Be @;,, maps under + to a
nonzero multiple of A €@, then B is a composition factor of pA.

To conclude this section we mention (see Lemma 5.4) that if G has a
discrete series, the ¢ functors map the discrete series into itself. The
functors enlarge the discrete series to include the limits of discrete series
(see Theorem 5.7).

2. Preliminaries on ¢ and +

For completeness we state here the definition of a compatible (8, K)-
module V (see [21]).

(i) Vis a G-module.

(ii) V is a K-module such that every vector v <€ V is K-smooth and
generates a finite dimensional K-stable subspace.

(iii) If K is the enveloping algebra of f, the K'-module derived from
the smooth representation of K coincides with the restriction of the 8-module
structure to XK.

(iv) If ke K, €9, and ve V, then

k-@-v)=[Ad(k)x]: (k-v) .

If V is a Harish-Chandra (8, K)-module and W is an irreducible (finite
dimensional) K-module, then we have dim Homg(W, V) < «. For any com-
patible (8, K)-module V, let V" be the K-submodule of vectors each generat-
ing a K-module isomorphic to W. Then, as a K-module, V = @, V" where
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{W} denotes the equivalence class of W.
Now let F' be the finite dimensional §-module of Section 1.

LEMMA 2.1. If Ac @, then AR FeQ@.
Proof (see [3]). Let W be an irreducible K-module. Then
Hom, (W, AR F) = Hom,(WXR F, A),

where F~ = Hom((F, @), the module contragredient to F. WRF~
decomposes into a finite sum of irreducible K-modules. Hence,
dim Hom (W, AR F) < co.

On the other hand, since A is finitely generated over S and F' is finite
dimensional, A ® F is also finitely generated over G.

We next prove the main properties of the projection functors p;.

LEMMA 2.2. If Ae@, p,A is a direct summand of A, and p, is an
exact functor from @ to Q.

Proof. Let I, be the kernel of »: Z— C. Let Z; be the localization (see
[2]) of Z at I,. Map m;A to A ®3 2, by sending a to a @ 1. This map—call
it —is a (8, K)-module morphism. By the finite dimensionality of the
K-isotypic space A", the restriction of 8 to (p,4)" induces an isomorphism
with A" Q< Z;. Hence, 8 is an isomorphism.

Thus, p;A is a direct summand of A. Moreover, by [2, Chapter II], p,
is exact.

We conclude this section by describing the subset € of §* that parame-
terizes Hom (3, C). We have chosen a closed Weyl chamber €, in the real
span h*(R) of the roots of Y in g. We write §* = §*(R) + ' —1H*(R), and
for A € §*, we write » = Rex + V' —1Im ), with Rex and Im » € h*(R).

First, construct the tube € = {\ e §*|Rerc €,}. Then, for each re €,
let A; be the set of €,-simple roots @ such that (Re N a) = 0.

Definition 2.3. € = {ve€|aeA,; implies (Im ) |a) = 0}.

LEMMA 2.4. € is a fundamental domain for the action of W on BH*.

Remarks. @: € is a semigroup. In particular, if ) is an element of
€ and g€ € is integral, then v + pe €.

®: Given €, we can now define @ and + as in Definition 1.1. This
definition will not depend on the choice of § or the order on the roots of §.

Proof of Lemma 2.4. We have §* = WE. For any reC, let E(\) =
{V|Re)N = Ren}. The reflections s, with @ c A, generate the Weyl group
W(Re \), which operates on €(\) with fundamental domain
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{Ve€Cn)|aeA, implies (Im)\|a) = 0} .

So h* = WE. Arguing first with real parts, then with imaginary parts, we
see that no two elements of € lie in the same W-orbit.

3. The composite functors, yrp and @
We prove the following key lemma:

LEMMA 3.1. If A in @; is irreducible, ypA 1is a multiple of A, and

def.

@A) = m =[WK): Wk + p)].

Reminder. A multiple B of A need not be completely reducible; we
only require all composition factors of B to be isomorphic to A.
From the proof of Lemma 3.1 we will easily see

LeEmMMA 3.2. If W(\) = WA+ 1) and BeQ@;,, s irreducible, then
pyB = B.

Our method of proof will be global character theory (see [9], [10], [16]).
By the subquotient theorem ([8], [21]), every irreducible Harish-Chandra
module A is isomorphic to the derived module of some “global” representa-
tion # of G. The global character 4. of = will depend only on the isomor-
phism class of A4, so that we write 6(A) = 0, (see [9]). Moreover, the isomor-
phism class of A is completely determined by 6(4). If A4,,---, A, is a set of
mutually inequivalent irreducible Harish-Chandra modules, the characters
0(A,), - -+, 6(A,) will be linearly independent (see [9]).

If Cis a reducible Harish-Chandra module, we define §(C) to be the sum
of the characters of the composition factors for a composition series of C;
this sum will be independent of the choice of composition series. If we have
an exact sequence 0 —C'—C—C" — 0, we will have 6(C) = 6(C") + 6(C").
Finally, if 6(C,) = 6(C.), then in some order the composition factors of C, are
isomorphic to the composition factors of C,.

The exactness of ¢, in combination with the above discussion on
characters, implies that for A € ®@,, (@A) depends only on 6(A). In addition
we conclude that Lemma 3.1 is equivalent to

LEMMA 3.3. If A€ @), 6(vpA) = mb(A).

Before proving Lemma 3.3 we need to discuss a simple formula for
0(F X A), F a finite dimensional G-module. 4(F) is a C~ function on G.
Hence, it makes sense to write the product 8(F)0(4).

LEMMA 3.4. 0(FF R A) = 6(F)9(A).

Lemma 3.4 follows easily from the distributional definition of (A4) (see
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[9]). We now review the crucial results from character theory that make
possible the application of Lemma 3.4:

@ 6(A)is representable by a function—which we also call §(A)—which
is locally summable with respect to Haar measure [11]. Thus, if we know
0(A) on the set G’ of regular semisimple elements, we know 6(4) completely.
Lemma 3.4 can now be reinterpreted in terms of multiplying functions
pointwise.

® 6(A) is real analytic on G’ and has there a rather explicit form
generalizing the Weyl character formula. Every element in G’ lies in a unique
Cartan subgroup, so that we need to describe the restriction of 6(A4) to
H' = HNG', H a Cartan subgroup of G. We fix an order on the roots of
b in g, b the complexification of the Lie algebra §, of H. Let €, be the cor-
responding Weyl chamber, and € be as in Definition 2.3. By assumption on
G we can define a Weyl denominator V on H (see [10]). We may also suppose
that §, =H_ + b,, where h_ =Hh Nt, and b =B nNp (@ =1 + p, is the
Cartan decomposition of g,). Then, if we set H = HN K, we have
H = H_exp),.

Let £ be V-0(A)!H'. If ais a root of § in g, let £, be the character of
H defined by ad (k) X, = £,(h)X,, where X, is a root vector for a. Finally,
let H'(R) = {he H|&,(h) # 1 if « is a real root of h}. Then £ extends to an
analytic function on H'(R).

Let % be a connected component of H'(R), and k,c H_ be an element on
the boundary of §. Then if A €@,

(8.5) k(hoexp X) = 3 p(X)exp{sn(X)},

if X e, is sufficiently small and h,exp X €%, where the functions p, are
polynomials on §. (For background see [10], [16].)

® If Fis a finite dimensional module and P(F') is the set of weights,
counted with their multiplicities, of F' with respect to §, then

(3.6) O(F)(h,exp X) = 3, &(Re) exp {P(X)} .
Here, ¢, is the character of H corresponding to a weight vector f, in
F:6(h)f, = hef..

@ If E€Q@, we can consider the functions £ = V - §(F) defined for each

Cartan subgroup; let A be the set of A € € such that p,E # 0. Then we will
have

k(hoexp X) = 3, A 2. Pea(X) exp {s{(X)} .
Moreover, V - 6(p,E)(h,exp X) will be given by

Y e Pei(X) exp {SM(X)} .
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Proof of Lemma 3.3. We take A €@, and write ¢ = ¢%,,. We have
V- O(F)0(A)hoexp X) = 33 1oy 2apew S(ha)Do(X) €xp {(8N + v)(X)} .

Hence, to compute 0(pA), we must determine for which v € P(F'*) there
exists ¢ € W such that t(sh + v) = N + p¢. Suppose we can find sucha t. We
have

ts(Re\) + tv = (Ren) + ¢,
and
tsdmn) =Imx .
Since Re\ is dominant, ¢s(Re\) is lower than or equal to Re\. Since z is
the highest weight of F'* and since P(F'*) is W-stable, tv is lower than or
equal to g. Hence, ts(ReX) = (Re\), tsh =\, and tv = g, or v = ¢,
Multiplying ¢ on the left by an element of W(A + ) will not change v. On
the other hand, ts must be in W(\). We conclude that
3.7
V- 0(pA)(h,exp X) = Ete%zsewfsmp(ho)ps()f)eXP {st7(v + (XD} .

Now suppose Be ®,;,.. We write 4 = i*#, We have
Ve O(F_)0(B)(ho€xXp X) =3, pir_ D2 oyer §ha)q(X) exp {[s(\ + 29) + v](XD},

where the ¢, are polynomials in the expression for V-4(B). To compute
0(4rB), we must determine for which v € P(F_,) there exists t € W such that
s + ) + v] = N If ¢ exists, then
(ReX) + ¢ =s"'t""(Ren) — sy,
and
(Im») = st (ImN\) .

Again, s7't"'(Re\) is lower than or equal to (Re\), and s™'v is higher

than or equal to — . Hence ts » =\ and v = —sp. We can therefore take
t = s7'. We conclude that
(3.8) V- 0y B)(hoexp X) = 33, é-ulh)a.,(X) exp s\(X) -

We apply the above formula to the case B = pA. By substituting st
for s in formula (8.7) and interchanging sums we find

V- 0(pA)h,exp X) = D, ., 2(X)exps(\ + p#)(X),
where

Qs(X> = Es/t(ho>2“ W) pst(X) .
WA+ )
Hence,
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V- 0(ypA) = E,EW(EM W) pst(X)) exp sn(X)
W Gt )

= [WO): Wh + @]32,., p.(X) exp si(X)
=m-V-6(4).

Lemma 3.2 also follows from formulas (8.7) and (3.8) in the case m = 1.
We mention that Theorem 1 in [3] asserts that for any A\ and for A € @,, the
polynomials p, are constants. The proof given in [3] of this theorem can in
fact be restated in our framework:

A theorem of Harish-Chandra [10] says that if A, is regular and A, € @,
then the polynomials in V- 6(A,) are constants. Given a singular A, find an
integral weight ¢ such that A + ¢ = \, is regular. Then for A€ @,, the
polynomials in V-6(pj, A) are constants. By formula (3.7), the polynomials
in V- 6(A) must be constants.

4. Proofs of Theorems 1.2 and 1.3

Part @ of Theorem 1.2 is an immediate corollary of formula (3.7). For
part @ we need

LEmMMA 4.1. + 15 a left adjoint to ¢; i.e. if Ae@, and Be@,,,,
Hom (B, pA) 18 naturally tsomorphic to Hom (4B, A).

Proof. Hom (B, F*® A) is naturally isomorphic to Hom (F_,® B, A),
since F_,&® B is naturally isomorphic to Hom (F*, B). Only the direct
summand p,,(F* & A) contributes to Hom (B, F* X A); likewise only the
direct summand p,(F_,& B) contributes to Hom(F_,® B, A). The lemma
follows.

We can now define a natural transformation j of functors (see [23])
from +r@ to the identity functor. We take, for A € @,, 7(4) to be the map
adjoint to the identity map of @A under the isomorphism Hom (vpA, A) =
Hom (@A, pA). The crucial property of j(A) is that it is nonzero if A4 is
nonzero.

Proof of Theorem 1.2, Part @. By hypothesis, WA + ) = W), so
for Airreduciblein @;, j(A)is an isomorphism, by Lemma 3.1. For arbitrary
C in @, we prove by induction on I(C) that j(C) is an isomorphism: let C’ be
a maximal submodule of C, and C"” = C/C’. We have, by the naturality of
7, a commutative diagram

0 voC’ voC voC” 0
j(cql j(C)j j(c")l
0 c’ C c” 0
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in which both rows are exact. If we assume that 7(D) is an isomorphism
for all modules D with I(D) < I(C), then we have j(C), j(C"), and therefore
4(C"), are all isomorphisms.

Retaining the hypothesis that W(n + p¢) = W(\), we use Lemmas 3.2
and 4.1 to prove that ¢+ is naturally isomorphic to the identity functor.
Hence @ and + are isomorphisms from (&, to &;,,and from @,,, to @, respec-
tively. Moreover, ¢ and + are natural inverses.

Proof of Theorem 1.3. Part : Given Be(Q,,,, irreducible, we may
assume that rBe€ A, is nonzero. Let C be an irreducible quotient of B.
We have Hom (B, C) = Hom (B, C). Let i: B— @C be the nontrivial map
adjoint to the projection from B to C. Then 4 is an injection, since B is
irreducible. By the exactness of +, we have an injection i: B — +rpC.
By Lemma 3.1, +@C is primary. Hence, B is primary.

Part @: Given an irreducible module A €@®; and an irreducible sub-
quotient B of pA, +B is a subquotient of +pA. The latter is a multiple of
A. Hence B is a multiple of A. Applying Lemma 3.1 again we conclude
that at least one composition factor of A4 maps under ++ to a nonzero
multiple of A.

Part ®: Suppose an irreducible module Be€ @,,, maps under + to a
nonzero multiple of A e@;, A irreducible. We have 6(vB) = k0(4), k a
positive integer. Hence 0(pvB) = k6(pA). Since B + 0, there exists an
injection of B into @+ B; this map is the adjoint to the identity map from
+B to ++B. Thus, 6(B) occurs in the decomposition of kf(pA), and therefore
also in the decomposition of #(A) into irreducible characters.

5. Discrete series and limits of discrete series

For this section we make the further assumption on G that rk K = rkG,
so that a maximal torus H in K is a Cartan subgroup of G. The differentials
of the characters of H form a lattice L in §*(R) (see Section 2 for notation).
Let P be a system of positive roots for § in g, and call » € L, P-dominant if
(Ma@) =0 for all e P.

If ye L is regular, there exists a unique irreducible module D, ¢ @®,
such that the globalization (see [8], [21]) is square-integrable and such that
(6.1) V(PYOD) | H = (1) 3, . i) €(8)6ar -

Here, p, is the unique positive root system with respect to which ) is
dominant, V(P,) is the associated Weyl denominator, ¢ = 1/2 dim G/K,
W(H: G) = [normalizer of H in G]/H, and &(s) = dets (for background see
[13]).
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Conversely, every square-integrable representation of G has its derived
module equivalent to some D,. If A, and \, are regularin L, D;, is equivalent
to D,, if and only if there is some ¢t € W(H: G) such that ¢\, = \,. The collec-
tion of modules {D;};..,w . is called the discrete series of G [13].

W. Schmid has introduced in [25] a family of invariant eigendistribu-
tions 6(P, \), obtained from the case \ is P-dominant regular by freezing
the constants in the local expressions for 6(D;) and then allowing \ to vary
over all elements of L. Thus, if T is an arbitrary Cartan subgroup of G,
Vr is the Weyl denominator for T, and  is a connected component of T"(R),
we can write

(5.2) V(D)) = 33, ¢, F Pt
where t €E and ¢(s, §, P) is a constant which vanishes whenever sL is not
contained in L (see Lemmas 5.7 and 5.8 in [12]). We define 6(P, \) by the
same formula when \ is arbitrary in L:
(5.3) V(P M)(E) = 3,63, T, P)éa(t) .
The patching conditions of Hirai [15] ensure that the above formulas in fact
define an invariant eigendistribution on G.

The proof of the following lemma is a variant of the proof of formula
(3.8):

LEMMA 5.4. Let \ be P-dominant (but not necessarily regular), and let
L be a P-dominant integral form such that N + pt is regular. Then

(9(P, 7\’) = 0("1’§+#D1+/¢) .
COROLLARY 5.5. If \ is also regular, then i**D,., = D,.
Proof of Lemma 5.4. We have

0(F—F)(t) = Epep(p_ﬂ)E»(t) .

Let {0(F_.)0(P, » + t0)}; denote that component of 6(F_,)0(P, n + )
consisting of characters of the form &,;,, se€ W. Arguing as in the derivation
of formula 3.8, we have

VAOF_)OP, N + 1) = 33, ., ¢(8, Ty P)Ei(D)
= V. 0(P, \) .
On the other hand, we have
0("/f§+”Dl+#) = {0(F—#)0(P; N+ #)}1 .

Combining these formulas, we obtain Lemma 5.4.
The author discovered Lemma 5.4 and Corollary 5.5 in spring of 1975.
These results have since been employed in references [14], [18], [26] and [28].
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We now state a new result, which follows from the combination of
Lemma 5.4 with Theorem 1.3:

COROLLARY 5.6. If A is P-dominant and singular, then 0(P, \) is @
(true) character of a primary module.

Corollary 5.6 is connected with other developments. In January 1975,
Schmid informed the author that modulo Blattner’s conjecture, one could
prove the following:

THEOREM 5.7. If \ is P-dominant and regular with respect to W(H: G),
then 6(P, \) is a (true) irreducible character.

After learning about Lemma 5.4, Schmid combined this result with
results in [26] to obtain a simpler proof' of Theorem 5.7. Then, the author
discovered Theorem 1.3, which, in combination with Lemma 5.4, yields
Corollary 5.6. The passage from Corollary 5.6 to Theorem 5.7 can be
effected via the following elementary argument on K-types:

First, if W is an irreducible K-module and P is a positive root system
for (9, g), we denote by A the highest weight of W relative to the compact
roots in P, and we write W = W,. If A is a Harish-Chandra module, we
let [A: A] = dim Hom (W ,, A).

Definition 5.8. A€ @ is a lowest K-type module relative to P if there
exists a K-type W, with [A: A] =1, such that if [A: A'] 0, then A’ =A + 7,
Y a sum (possibly empty) of roots in P.

Definition 5.9. Given P, let o, = one-half the sum of the positive
compact roots, and o, = one-half the sum of the positive noncompact roots.

Lemma 5.10 (see proof of Lemma (4.14) of [26]). Suppose Ac@, isa
lowest K-type module, and the lowest highest weight A satisfies the condi-
tion: A — p, is dominant with respect to compact roots in P. Then,

7\':1&_*—(0¢_(0'n'

THEOREM 5.11 (see [26]). For N\ as in Theorem 5.7, the module whose
character is (P, \) is a lowest K-type module.

Proof. For very regular \,, D, is a lowest K-type module, by an old
theorem of Schmid [24]. Given A above, find £ so that A + g is very regular.
By Lemma 5.4, (P, \) is the character of i**D,,,.. W, occurs in F_,Q
D,.,only if A" =y + A", v a weight F_,, A" a highest K-weight in D,,.
Moreover, if A, is the lowest highest weight in D, ., A, — ¢t =X+ 0, — 0,
is K-dominant and W, _, occurs exactly once in F_,® D;, .

! Lecture at Institute for Advanced Study, February 2, 1976.
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Hence, F_,&® D,,, is a lowest K-type module. Moreover, the lowest
K-type must lie in p,(F_, Q D;,,) = ¥v3**D, .. Thus, the latter module is
a lowest K-type module.

Theorem 5.7 now follows from Corollary 5.6 and Theorem 5.11, since a
primary module having a K-type with multiplicity one must be irreducible.
From now on we write D(P, \) for the module with character (P, \), A as
in Theorem 5.7.

If the form )\ in Theorem 5.11 is regular, we recover the relevant
portions of Theorems 1.3 and 1.4 in [26] (minus the further assumption
that G is linear). Corollary 5.5 is a key step in Schmid’s proof of the lowest
K-type property for the discrete series. Schmid also seems to need his
universal lowest K-type modules. It now appears the universal modules are
necessary only for the deeper result that D, is uniquely characterized by its
lowest K-type. We thank N. Wallach for this last observation and for
suggesting a variant of the proof of Theorem 5.11.

In [25], Schmid shows that if the discrete series modules have the low-
est K-type property, then the D,’s can be realized as spaces of L*-harmonic
spinors (see Corollary 1.5 of [26]). We now obtain this form of the Langlands
conjecture from our Theorem 5.11, without recourse to the universal
modules of Schmid, and without the assumption that G is linear.

In his proof [27] of the original Langlands conjecture (realization of
discrete series via L*-Dolbeault cohomology on G/H), Schmid uses a state-
ment (Lemma 4.5) stronger than our Theorem 5.11. However, an examina-
tion of the proof of Theorem 4.1 in [27], particularly the proof of Lemma
4.14, shows that after all, only our Theorem 5.11 is needed. Again, we can
now drop the assumption that G is linear.

In a sequel to the present paper, we will take up the following topics:

@ A closer look at the functors ¢i,, and 44** when N + g is regular
and ) is singular;

(@ An application of results from (@) to give new information on limits
of discrete series, particularly in the case when X\ is singular with respect
to compact roots;

® An identification of limits of discrete series with certain of the
modules constructed by Enright and Varadarajan (see [28]). Schmid [26]
and Wallach [28] have already employed Lemma 5.4 above to identify
discrete series modules with some of the Enright-Varadarajan modules.

@ A demonstration of the compatibility between periodicity theory
and the theory of parabolic induction of Harish-Chandra modules.
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We conclude the present paper by mentioning that we can construct a

periodicity theory for the O-category of Bernshtein-Gelfand-Gelfand (see [1]).2
In fact, periodicity is used implicitly in the proof of the main theorem in

[1].
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