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1. Introduction

L1 Summary. The purpose of this survey is to describe, with occasional
indications of proofs, some of the main results in harmonic analysis on real semi-
simple Lie groups. More precisely we shall discuss the theory of characters and
some of its important consequences, especially the determination of the discrete
series of representations, i.e., the irreducible unitary representations with square
integrable matrix coefficients. The central results of this theory were obtained by
Harish-Chandra in a series of papers [4], [5], [6] in the past two decades, and
there are clear indications that the ideas and methods of these articles will continue
to play a pivotal and definitive role in Fourier analysis on semisimple Lie groups.

Let G be a connected real semisimple Lie group with finite center. The guiding
principle behind Harish-Chandra’s approach to harmonic analysis may be for-
mulated as follows: Each Cartan subgroup of G makes a separate contribution to
the Plancherel formula on G, the compact Cartan subgroups (when they exist)
contribute to the discrete part of the Plancherel formula, and the contribution
from an arbitrary Cartan subgroup is determined by the discrete series of a suitable
reductive subgroup of G ([4g], [6i]). More precisely, let Z=1,L, be a Cartan
subgroup where Ly is a vector group and Z, the maximal compact subgroup of-
L, and let P be a parabolic subgroup with Langlands decomposition P=MLN.
Then L, is a (compact) Cartan subgroup of M, and the part of the Plancherel
formula due to L is determined by those unitary representations of G that are
induced by the representations man—{ (a) y(m) (me M, ae Ly, ne N} of P, where {
is a unitary character of L and v is a discrete series, representation of M (these
representations of & are irreducible for almost all { and have a finite Jordan de-
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composition for all {}. From this point of view the construction of the discrete
series is an indispensable prerequisite for carrying out the L* Fourier theory on G.

However, the determination of the discrete series turned out to be an extremely
difficult problem. The carly work of Bargmann [1] succeeded in the case
G'=SL(2, R); but its subsequent generalizations aimed at realizing these represen-
tations in Hilbert spaces of holomorphic functions on suitable homogeneous
spaces of G were only partially successful ([4d], [4e], [4f]; see however [9], [10],
[11]). It was only relatively recently that Harish-Chandra succeeded in deter-
mining all the characters of the discrete series through a profound study of the
differential equations satisfied by them ([6f], [6h]). Our aim in this article is to
sketch an outline of the main features of Harish-Chandra’s work leading to this
construction. Roughly speaking, there are four parts to this program.

The first deals with the local theory of characters, and more generally, in-
variant eigendistributions. We shall come to this a little bit later.

In the second part (§3) we assume that G has a compact Cartan subgroup B.
The problem here is to construct, corresponding to each regular character ¢ of B,
an invariant eigendistribution on G which is given on B’ by a formula similar to
Weyl’s formula in the compact case. Note that excepl in the case of compact G,
G will have noncompact Cartan subgroups, and consequently it is not reasonable

. to expect an invariant eigendistribution to be determined by its values on B'; for

example, the characters of the unitary principal series all vanish on 8. However, by
imposing an extra global condition ((ii) of (3.1.1)) on the distribution, that restricts
its behaviour at infinity on ¢, Harish-Chandra was able to prove the existence of
a unique distribution @, with the required properties ! (the condition (ii) of (3.1.1)
is nothing more than saying that &, is tempered).

In the third part (§6) we examine the behaviour at infinity of the analytic
functions  which are the Fourier components of the @, with respect to a maximal
compact subgroup K. Clearly the main question to be settled here is the square
integrability of these functions. We describe Harish-Chandra’s solution to this
problem [6h]; it is based on a systematic study of the asymptotic behaviour of
K-finite tempered eigenfunctions on G, many ideas of which go back to his papers
[Se], [51].

In the fourth part (§§5, 7) we consider the closed subspace of L*(G) spanned
by the translates of the Fourier components of the @ ;. This subspace can be shown
to be contained in the Hilbert space °L2 (G) spanned by the matrix coefficients of
the discrete series of G, and the problem is to show that it is all of °L2 (G), i.e., a
completeness question. This was accomplished by Harish-Chandra through the
fundamental technique of integrating over the conjugacy classes. The main point
here is that this technique reduces the harmonic analysis of the matrix coefficients

' In our later notation, @,=@, when £ =¢,.
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of the discrete series to questions of Fourier analysis on B, and the fact thal we
have a distribution &, corresponding to each regular character & of B is decisive
here. This method is similar to that used by Weyl in the compact case. It must be
pointed out, however, that this similarity is essentially formal. The conjugacy
classes of noncompact G are unbounded, and in order to construct a satisfactory
theory of integration over them, it is absolutely essential to overcome convergence
problems at infinity (§§4, 5.3-5.5).

Fundamental to all this development and preceding it is the local theory of
invariant eigendistributions. We describe briefly in §2 the main results of this
aspect of analysis on G. The theorems dealing with this topic were established by
Harish-Chandra in two stages - first by reducing them to analogous questions on
the Lie algebra, and deducing the latter from general theorems on invariant eigen-
distributions on semisimple Lie algebras. This survey makes no attempt to discuss
either of these in any detail. We wish to point out, however, that the above
mentioned reduction to the Lie algebra is much more than a technical device. It
actually establishes a remarkable connection between harmonic analysis on G and
that on the vector space g. As a major illustration of this we mention the crucial
role played by the theory of Fourier transforms on g in the construction of the
distributions &; (§3.5).

1.2. Notation and preliminaries. We shall work with a real Lie group G, not
necessarily connected, with Lie algebra g; g, is the complexification of g and 6,
the universal enveloping algebra of g,. We write 3 for the center of . The impor-
tant case is when G is connected, semisimple and has a finite center; but the

“technical necessities of many proofs make it often convenient to operate in the

wider context of groups of class #°. We shall say that G is of class # if it has the
following properties: (i) g is reductive and Ad[G] is contained in the connected
complex adjoint group of g.; (i} G, and the centralizer of g in G, have both
finitely many connected components; (iii) if °G =/, kernel(y) where the inter-
section is over all continuous homomorphisms of & into the positive reals, G
splits as °GG x V¥ where ¥ is a vector group; and (iv) the analytic subgroup of G
defined by [g, g] is closed. As a rule the structure theory of semisimple groups
carries over to this more general case. K will denote a fixed maximal compact
subgroup of G, and #, the corresponding involution of G with 0{x)=x"?*, Vxe V.
g=Tf+p is the associated Cartan decomposition of g, T being the Lie algebra of
K; G=K-expp as vsual. {-, -> denotes a nonsingular G-invariant symmetric
bilinear form on g x g such that (i) it is the Killing form on g, x g, (g;=[g. g)).
(ii) f and p are orthogonal, and (iii) X' | X |2 = — <X, 6X) is positive definite on g,
thus converting g into a Hilbert space, :

For xeG, D{x) is the coeflicient of ¢ in det(Ad(x)—1+7¢) where / =rank(G).
G'={x:xeG, D(x)#0} is the set of regular points of G. For any Cartan subalgebra
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(CSA) 1, the corresponding Cartan subgroup (CSG) is defined as the centralizer L
of tin G; L'=LnG’. For any root a of (g, [} we write &, for the corresponding
global root on L; « is said to be real (imaginary) if its values on [ are all real
{imaginary). Any CSG is conjugate to one which is f-stable; if L above is 0-stable,
L=(LnK) exp(Inp). G may not admit compact CSG’s, but if it does, they are all
conjugate. Suppose G <G, where G, is a complex semisimple group, and { is as
above. We write L, for the centralizer of [, in G If uel¥, we write ¢, for the
complex character of L, such that &, (exp H)= " (Hel), whenever this exists.
If P is a positive system of roots of (g, [}, dp=4% > ,cp & and &, exists, we write
Ay p=E_s, [ aep(éa—1). Wy (W) is the normalizer of L in G (L, in G). As
usual we say Ael* is regular if (4, 0> #0, YaeP, integral if 2{A, a)/{a, a2,
YoeP.

G=KAN and g="1+a+n are fixed Iwas‘awa decompositions, with agp. a™ is
thc positive chamber in a, A* =expa*, and log: 4 — a inverts exp:a— 4. o(H)
=3 tr(ad H), (Hea). X denotes the set of simple roots of (g, a). :

A subalgebra q of g is parabolic if q, contains a Borel subalgebra of g.; the nor-
malizer O of q in G is the corresponding parabolic subgroup (psgrp). q=m, +n,,
where m, = qn0(q) is reductive and 1, is the nil radical of gnig, g], the sum being
direct. If c=center(m,)p, and m is the orthogonal complement of ¢ in m,, we
have the Langlands decomposition q=m+c¢+n,. If C=expe, M 1> the centralizer
of ¢ in G, M=°M, and N,=expn,, we have the Langlands decomposition
Q=MCN ; moreover M, =Qn0(Q)and m is the Lie algebra of M. If{is a §-stable
CSA we can always choose q such that ¢=Inp. We denote by d, the character
my —|det Ad(my),, 11? of M.

Let F=X and let pp==m,p+np=mz+az+n; where ap is the null space of F,
ity is the centralizer of ay in g, and 1y is the span of the root spaces g, for those
positive roots A of (g, a) which are not in R-F. Then p; is parabolic, and the
above direct sums are its Langlands decompositions. We call these standard and
denote their corresponding global counterparts by Py, M5, Ap, Np. Any psgrp is
conjugate via K 10 a unique standard one. &, 2, N, M, ., My, ., N, are the sub-
algebras (containing 1) of ® generated respectively by £, a, n, my,, my, ap, 1. 3
denotes the center of MM, .. We put dp=d,,.

The elements of ® act as differential operators in G from both left and right.
We use Harish-Chandra’s notation and put, for a smooth function f, @, be ®, and
xeG, (afb) (x)=f(b: x; a); and for Xeg, [{X; x)=(d/ds) (f (exp tXX))u0, f{x; X)
=(d/dt) (f(x exptX))=o {x€G). We denote the adjoint of ae® by d', so that
{caf-gdx=[sfa'g dx for all f, g C2(G). ® also acts on distributions on G; if
T is a distribution and ae®, (aT)(f)=T{(a)(feCZ(G). T is said to be in-
variant if it is invariant under the inner automorphisms of G; it is said to be an
eigendistribution if for some homomorphism y: 3~ C, zT=x(z) T, Vze 3. If M is
any Lie subgroup of G with Lie algebra m and if ¥ is any character of M, then,
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for aeM (=subalgebra of & generated by (1, m)), xeaoy *eM; if y =e¢* where
pemt, arsyoacx~' is the unique automorphism of 9 such that XoXoy =
X—u(X) 1(Xem).

Let I be a CSA and P a positive system of roots of (0, ). If6=%), . paand X,
are root vectors, then, for any ze 3, there exists a unique element y,(z) in the
subalgebra £ of & generated by (1, 1) such that z—e- Sottgn(z)od®e) ,p GBX,;
g (2) is independent of P and Mg 18 an isomorphism of 3 onto the algebra of all
clements of £ that are invariant under the Weyl group of (g,, 1). If el¥, the map

Bz @ () (ze3)
is a homomorphism of 3 into C; we often write X for i y,=y,. if and only if
Aand A" are in the same orbit of the Weyl group of (g,, I.); every homomorphism
of 3 into C is of the form y, for some Aelf. If b, is another CSA of g.and y is
an element of the complex adjoint group of g such that =), then y/ =y D -t
X5 1s called regular if A is regular.

Suppose m is a subalgebra of g which is reductive in g and has the same
rank as g. Let M be as above, and 3w the center of 9. Then there exists a unique
injection p,,, of 3 into 3, with the following property: For any CSA Icm,

it = P10 by o O 15 @ free finite module over tom L3], of rank equal to the index

of the Weyl group of (m,, 1) in that of (g, ). On the other hand, with I as above,

we have a natural “restriction” isomorphism pr-p,, of the algebra I (g) of G-

invariant elements of the symmetric algebra S(g,) onto the algebra of Weyl group

invariants of S(I,). So we have a canonical isomorphism {— of 3 onto /(g) such -
that ug()=(C). Suppose q=g is a parabolic subalgebra and m,, n,, O are as

defined earlier. Then, for any ze 3, zy=dy o llgp, (z)od,, is the unique element of

the center of the enveloping algebra of my such that z~z,€6(n,} Gn,. For Fc ¥

we write i for p,, . '

We assume the reader is familiar with the basic concepts and results of represen-
tation theory (cf. [4a], {4b], [4c]). Let € (G) denote the set of all equivalence classes
of irreducible unitary representations of G. If newed (G), the multiplicities [w:d]
with which the classes be& (K) enter in the restriction of 7 to K are all finite, and,
in fact, there is a constant ¢ >0 such that [w: b]<c dim(d), Voe & (G) and bes (K).
It follows from this that, for newed (G) and any feC®(G), the operator n(f)
=g f(x) m{x) dx is of trace class, and O, f>trn(f) is an invariant distribution
on G that depends only on the class . Let X be the infinitesimal character of
@, so that, for any ze3, n(z)=y,(z)-1 on the Gérding subspace of = then
280,=1y,(2) O, for all ze3. Thus @, the global character of w, is an invariant
eigendistribution corresponding to the eigenhomomorphism y,,. In addition
@, is of the positive definite type, i.e.,

(1) Ou(f*Z0  (feC®(G);
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here * denotes convolution and f (x) =/ (x " }**¥ (x& G). Of course the most crucial
property of @, is that it determines w completely: 0, =w, =0, =0,
Let Xy,..., X, be an orthonormal basis for { and let

(2) Q=1-{X?+- +X7).

(2 is independent of the choice of the basis and @*=0Q, VkeK. If be&(K), the
members of b map {2 into a real scalar ¢(d)= 1 and it is known that for some ¢ =0,
dim(b)=0(c(d)?) and 3, c(d) < o0. Let newed (G); H, the Hilbert space of =;
$, (be&(K)) the isotypical subspaces of $ and E,:$H~$, the corresponding
orthogonal projections, Then, Yee$,, ¢'e9, feCP(G), and any integer s=0,

@ (/) 9, 9)= c0)"* f (@) () (2(x) 9. ) dx.

and so [|z(f) E 2c(d)7° 1€/l (]|, is the LP-norm): These estimates, together
with the bounds [w: D] < ¢ dim(b), easily imply that z(f) is of trace class and that
for some C>0, ¢ =0,

() 0, N=CILfl (feCP(G);
and further, that if the matrix coefficients of w are in L*(G),
(5) O (N=CIQY),  (feCZ(G).

The theory of representations and characters is intimately related to the theory
of (matrix as well as scalar) spherical functions. To define the latter in sufficient
generality we proceed as follows. Let U be a finite-dimensional Hilbert space and
©=(1,, T,) a unitary double representation of K: This means that t, is a unitary
representation and t, a unitary antirepresentation of X in U, such that 7, (k,) and
1, {k;) commute Vk,, k,e K; in view of this we allow t, to act from the left and 1,
to-do so from the right. A function f:G—- U is said to be z-spherical if f (k,xk;)=
7(ky) f(x) T2(k,), Vx€G, ky, k,e K. C*(G:7) is the space of all t-spherical func-
tions of class C*. Of special interest are those functions in C®(G:t) which are
J-finite. These are alf analytic, and they arise in a natural fashion from irreducible
representations of G. For example, let newed (G) and the notation be as in the
previous paragraph. Fix by, d,e&(K) and let U be the Hilbert space of linear
maps u: §y,—> 9y, with the Hilbert-Schmidt norm. Let =, (k) (ke K, de#(K)) be the
restriction of 7 (k) to 9, and let 7, (ky) u=my, (k) u, ury (ko) =um, (k,) (k, k, €K,
ueU). Then fix E, n(x} E,, is an element of C*(G:7), and zf=y,(z) f, for all
ze J. It is interesting to consider the special case when b, =D, is the trivial class of
K; the function f is then spherical in the usual sense (f (k;xk;)= f(x), VxeG,
k,, k,€ K) and is an eigenfunction for every element of the centralizer of K in ®.
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The importance and usefulness in harmonic analysis of the t-spherical functions
which are eigenfunctions for 3 lies of course in the fact that they can be studied
directly on the group with the help of their differential equations. As an illustration
of this remark we mention the following theorem, which can be used to prove the
fundamental finite multiplicity theorems of representation theory.

TueoreMm 1. Let t, U and the other notation be as above. Fix an ideal 3oin 3
such that m=dim(3/3o) < 0. Let F(3o:7) be the space of all f € C* (G :1) such that
zf=0, for all ze 3,. Then

(6) dim (F(3o: 7)) Smw dim (U}

where w is the order of a Weyl group of g..

CorOLLARY 2. Let we & (G). Then [w:b] is finite for all ve& (K) and
(7) [w:d]<w'? dim(d)  (ves(K)).

CoRrOLLARY 3. Let fbe a C*® function on G with values in a finite-dimensional
vector space V such that (i) dim(3f) < oo, (ii) the left and right translates of f by
elements of K span a finite-dimensional space. Then there exist o, fe C®(G) invariant
under inner automorphisms by elements of K such that f=o» I*p.

For a representation-theoretic proof of this see [6h, Theorem 1].

2. Local behaviour of invariant cigendistributions

We now take up the description of the local behaviour of invariant eigen-
distributions on a semisimple group. Throughout this section G is a connected
real form of a simply connected complex semisimple Lie group G .. However, with
suitable modifications, the main results may be shown to be valid for all connected
reductive groups.

2.1. Formulation of the main theorems. Let ¥ and W be open subsets of G
with g V; @, a distribution on ¥ and @, =& | W. @ is said to be 3-finite on
Wif dim{30) < .

An invariant open set ¥ <G is said to be completely invariant when it has the
following property: If xe ¥ and x, is the semisimple part in the Jordan decomposi-
tion of x, then x,e V.? In Theorems 1-4, Vis an arbitrary completely invariant open
subset of G.

* This definition appears to be slightly weaker than Harish-Chandra’s {6e, p. 461], but is actually
equivalent to his.
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THEOREM 1.  Let @ be an invariant 3-finite distribution on V. Then © is a locally
summable function that is analytic on VnG'. Let L be a CSG and P any positive
system of roots of (g, ). Define @, pla)=A4, p(a) @(a) (acL' V). Then

(1) ﬂg/l(z) (pL,PZO: VZE-SGs
where 1 is the CSA corresponding to L and 3g={z:2¢3, 20 =0}.

Let & be the space of all fe C*(]) such that p,(2) f=0, Vze 3. Suppose that
acLnV, o is a sufficiently. small connected neighborhood of ¢ in I, and bo*
={H:Hev, aexpHeL'}. Then, for each connected component »* of v*, there
exists f,+ e § such that &, p(a exp H)= f,+ (H) (Hev*). It must however be kept in
mind that /. will in general vary with o™, It is clearly a very important problem to
elucidate the relations that obtain among the f,. on the interfaces between the
various »*. Theorem 2 deals with this question.

Let L, P be as in Theorem 1. Put wy p=]],cp H, and regard w, , as a
differential operator on L. Define

(2 L'(R)={a:aeL, £ {a)s 1 for each real root «}.

THEOREM 2. Let the notation be as in Theorem 1. Then @y p extends to an
 analytic function on L'(R)N\V while w; p®p p extends to a continuous function ¥y,
on LV, ¥, is independent of the choice of P. If L, and L, are two CSG'’s, ‘I’I;l =¥
on L.ynl,nV.

THEOREM 3. Let y:3— C be a regular homomorphism and let @' be an in-
variant analytic function on G'N\V such that z@' =y(z) @', for all ze 3. Then @' is
locally integrable around each point of V.

Put @(f)=[g v @' (%) f(x)dx(fe C2(V)). Then, in order that the distribution
@ satisfy the differential equations 2@ =y(2) @(ze3) on V, it is sufficient that the
Junctions @y p possess the properties described in Theorem 2.

Let aeG be a semisimple element. We shall say that a is semiregular if the
derived algebra of the centralizer of ¢ in g has dimension 3.

THEOREM 4. Let @ be an invariant locally summable function on V that is
analytic and 3-finite on G'\V. In order that @ be 3-finite on V, it is necessary
and sufficient that, for each (semisimple) semiregular aeV, there should exist an
open neighborhood N,<V of a such that © is 3-finite on N,.

Theorems 1 and 2 are due to Harish-Chandra [6e], while Theorems 3 and 4
are virtually implicit in his work {{6c], [6e]; see also [8]). Harish-Chandra’s
method of proving these theorems rests (mainly) on transferring the study of an
invariant distribution in a neighborhood of a semisimple point a€G to the study of
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an associated invariant distribution in a neighborhood of 0 of the centralizer of
@ in g. We now wish to describe this procedure more precisely.

Let ae G be semisimple and let m, (resp. M) be its centralizer in g {resp. G). A
system (u, V) is said to be adapted to a if the following conditions are satisfied:

(i) uis an M -invariant open neighborhood of 0 in m,, which is star-like ® at

0, and which contains the semisimple parts of each of its elements; ¥ = U/S where
U=aexpu.

(i) X—a expX is an analytic diffeomorphism of u on U,

(i) For yeU, D,(y)=det(Ad(y)- 1)ypme, #0.

(iv) If xeG, X, X’eu, and {aexp Xy =aexpX’, then xeM, and X*= X",

Under these circumstances ¥ can be shown to be open and completely in-
variant. ¥ and u are both connected. We write

exp(ad,, X)~1
3 J A X)=det] — "M
( ) .; ﬂ( ) e ( ad'““X

J(X)>0, VX e,

Let I(m,) be the algebra of all elements of the symmetric algebra over (m,),
that are invariant under the adjoint group of m,. Let {{ be the canonical iso-
morphism (cf. §1.2) of the center of the enveloping algebra of (m,), onto I(nt,). '

) (Xeu);

THEOREM 5. (i) Let V be a completely invariant open subset of G, and V, the
set of semisimple points of V. Then, Jor each aeV,, there exists (.. V) adapted 1o
a with V, < V; moreover, Jor any such choices, V= User, Ve

(i) Let aeG be semisimple and let (, V) be adapted to a. Then there is a linear
isomorphism @18, of the space of invariant distributions on V onio the space of
M ~invariant distributions onu with the Jollowing properties: (a) for any ze3, (z0),
= Uy, (2)) ©,, (b) @ is a locally summable Junction on V if and only if @, is a
locally summable function on u; moreover, in this case, VX eu,

(4) 0,(X)=6(a exp X) |D,(a exp X)| /2 J(xye,

2.2. Some remarks on the proofs. These theorems are quite difficult to prove
and we do not propose to go into their proofs in any detail. We shall restrict our-
selves to a few comments on the main lines of argument.

We begin with Theorem 5. Concerning (i), let aeG be semisimple, and let
Va(e)=(a expu,(£))¢ where ¢>0 and

Uy (e)={X: Xem,, || <e, for all cigenvalues A of adX}.

One can then prove that (u,(z), Vale)} is adapted to a for all sufficiently small

* This means that if Xeu and tlst, tXen.
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e>0, and that, given any invariant open set ¥ containing a, V,{e}= W for some

e>0.
Part (ii) is incomparably more difficult to establish. There are three main stages
in its proof, For the first we need the following two lemimas.

- LemMA 1..Let M (resp. N) be an analytic orientable manifold of dimension
m (resp. 1), and let wyg (resp. wy) be an analytic m-form (resp. n-form) on M (resp. N)
that is everywhere >0. Let \y be an analytic submersion of M onto N. Then, for each
ae C (M), there exists f,€ CT (N) such that

) j o= j Get) oy (geCo(V)).

N

The map arf, is linear, maps C2 (M) onto C? (N), aind is continuous in the Schwartz
topologies; moreover, supp(f,) =W [suppe]. If Dy (resp. Dy) is a C* differential
operator on M (resp. N) and if Dy, and Dy are y-related,* then fys, .= DL f,, for all
ae C® (M), the adjoints being taken with respect to any and wy.

This is essentially a local result [6a, Theorem 1].
For any distribution @ on N let 1ty be the distribution on M such that
16(2)=@(f.); @14 is linear and injective.

LEMMA 2. For the map @1 we have (i) supp{tg) =y~ [supp @), (ii) if Dy
and Dy are as in Lemma 1, Dyto=1, g, (ill) if S is a measurable function on N,
S is locally summable on N if and only if Soyt is locally summable on M ; in this
case, Tg=Sol.

In the context of Theorem 5 we take M =G xu, N=V, y(x, X)={a expX)*,
wy =dxdX, wy=dX. If @ is invariant we can write 1, =1®0, for a unique distri-
bution 64 on 4, and og is M -invariant, The map &+-04 is a linear isomorphism
of the space of invariant distributions on ¥ onto the space of M, -invariant distri-
butions on u. '

The second stage consists in establishing

LemMA 3. Given any analytic invariant differential operator E on V, there is
an analytic M ~invariant differential operator R(E) onu such that opg = R(E) o for
all invariant distributions © on V.

For this see [6e, §§5-7].
Let 4,(X)=|D,(a exp X)}'/? J,(X)"* (Xen). The third step consists in proving
that, for any ze 3,

+ This means that (Dyg)e i = Da(g o ) for all ge C=(N).
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(2) R(Z) S= (’:”; ! o (#g.’rna (Z)) "o )“a) S

for all M -invariant distributions S on u. Once this is done we obtain at once the
relation

(3) 0.0= (;'t; ! o (Jug,’ma (Z)) o )'a) Jg (ZE 3)

for all invariant distributions & on V, so that we may take @,=/ 04. The proof
of (2) is simple if § is any M -invariant C* function on u; for distributions, (2)
follows from the following lemma.

LeMMA 4. Let F be an analytic M -invariant differential operator on u. Suppose
FS=0 for every M ,invariant C* function S on u. Then FS=0 for every M,
invariant distribution S on u.

Theorem 5 follows from these results. However Lemma 4 is difficult to estab-
lish and its proof is based on some of the deeper aspects of invariant analysis on
reductive Li¢ algebras [6d, Theorems 4 and 5].

Theorem 5 enables one to reduce the proofs of Theorems 1-4 to those of
analogous results on reductive Lie algebras. We shall show how this is done for
Theorems 1 and 2 while referring the reader to Harish-Chandra’s papers ([6a],
[6b], [6¢c], [6d]) for the theory of invariant distributions on reductive Lie algebras.

We first consider Theorem I. By Theorem 5, @, is M, -invariant and J(m,)-
finite on u,, and hence is a locally summable function on 1, by Theorem 1 of [6d].
This shows that @ is a locally summable function around a. As a€ V is arbitrary,
@ is a locally summable function on V.

The reduction of Theorem 2 is based on the following lemma; here aeG is
semisimple and (u, ¥) is adapted to a.

LemMMA 5. Letl<m, bea CSA andlet P (resp.' P,) be a positive system of roots of
(9. 1) (resp. (mg, D). Write np, =] loce, &% ©p,=[lacr, Ho @pp, = [lacrir, He
Then there exists a constant c(l, P, P,)50 such that, for all Xelru,
4 Ay plaexpX)=c(l, P, Py mp (X)|D (a expX)'/? J,(X)2,

Moreover, if {, is the element of I{m,) whose restriction to 1, is ¢(l, P, P,) wpp,
then {, is independent of the choices of |, P and P,.

Suppose @ is an invariant J-finite distribution on V. We note that for
Xelnu, a exp Xe L' (resp. L'(R))if and only if no root (resp. no real root) of (m,, 1)
vanishes at X. Let ®,={,@,. From Lemma 5 we then obtain, for all Xelru with
mp, (X)#0,

@, plaexpX)=c(l, P, P) mp (X) @,(X), (wy,p®; »)(a epr)= B.(X; Wp,oTp,).
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Theorem 2 now follows from Theorems 2 and 3 and Lemma 19 of [6d}].

2.3. Examples and remarks. Let y:3 > Chbea homomorphism and let
(1) 3 (x)={©:0 an invariant distribution on G, 20 =y (z) @, Vze 3}.

It follows from Theorems I and 2 of §2.1 and the theory of differential equations
invariant with respect to a finite reflexion group [13] that

(2) dim (F{x)) = Nw

where w is the order of a Weyl group of g, and N is the total number of
connected components of the various L{(R), Ly, ..., L, being a complete system of
mutually nonconjugate CSG’s of G. In particular there cannot exist more than Nw
mutually inequivalent irreducible unitary representations with the same infinites-
imal character. In fact we have the following more general result as a direct con-
sequence of (2):° Let z be a representation of G in a Banach space ¥ such that (a)
all the K-multiplicities of = are finite; (b) = has both global and infinitesimal
characters; then there is an integer =1 and closed m-invariant subspaces V,
=V=2V,2...-2V,={0} such that the representations induced in V,/V;,, are
irreducible for all i=0, 1,..., r—1.

We should also note that an invariant 3-finite distribution on G is an analytic

function on an open set that is somewhat larger than G' [4i, Theorem 6]. Let

‘G be the set of all semisimple points ae G whose centralizers in g have compact ad-
joint groups., ‘G is easily seen to be an invariant open subset of ¢. Any in-
variant 3-finite distribution @ on a completely invariant open set ¥ is actually an
analytic function on ‘G V. In fact, let ae’'GnV and let (1, V,) be adapted to a
with V,<V; then I{m,) coniains an elliptic element [], and @, is annihilated on
u, by ¥ +¢, 0% '+ +¢ for suitable constants ¢, ..., ¢,.

It is an interesting problem to determine J(x) as explicitly as possible for an
arbitrary y (see [8] for many explicit calculations involving SU(p, g)}. We merely
limit ourselves to a consideration of some examples. We write »(G) for the maxi-
mum number of mutually nonconjugate CSG’s of G.

ExampLE 1. r(G)==1. Let L be a f-stable CSG, 1 its Lie algebra. Then
[=¢+a where c=I[nf, and a=Inp is maximal abelian in p; also L= CA where
C=LnK and A=expa. For aeL we write ay and a, for the components of @ in
C and A4 respectively. Write A=A, ». Let ¥ be the set of all uel* for which
exp Hr-exp {u(H)} is well defined on expe.

For any pel¥ let §(u) be the space of all analytic functions ¢ on L such that
(i) ¢*=e(s) @, Vse Wy, and (i) vo=v(w) ¢, Yvep,; [3]. A simple argument shows
that §(u)={0} if W, -un%=0. Now (g, ) has no real roots while every semi-
regular point of & is already in 'G. From these facts and Theorems 2, 4 and § of

* This was pointed out to me by Harish-Chandra in 1968.
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§2.1 we then obtain the following result: Fix A€l¥, and for any @eJ(x,) let ¢, be
the analytic function on L such that vo(a)=4(a) @(a) (acL’); then @+ g, is a
linear isomorphism of J(y,) onto §(4). In particular, J(x2)= {0} when W,_-An¥

For any character (not necessarily unitary) £ of L let p.el* be defined by
¢ (exp H)=exp{u,(H)} (Hel). For any pel* let W, be the stabilizer of  in W;_and
let P(y) be the space of all polynomials p on I¥ such that () p is harmonic® with
respect to W, and (b) p(H, + H,)=p(H,), VH, e, H,ea. Given any W, -orbit o
in € let A’(v) be the space spanned by functions of the form ars&(a) p(logag)
where ¢ is a character of £, with Heeo and pe P(u,); A'(o).is stable under W, and
we write 4 (o) for the subspace of all peA'(o) such that p*=¢(s) @, Vse W,. It is
then not difficult to prove that for any Ael¥, §(4) is precisely the direct sum of
the spaces 4(0;) (1 =i<r) where o,, ..., o, are the distinct Wi-orbits in W, _-An%,

Let £ be a character of L. Then the function =D vew, &(5) & lies in (),
and so there exists an invariant eigendistribution ®, such that 4-(@,[L)is a
nonzero multiple of ¢,. It can be verified that for a suitable choice of this con-
stant, @, is the character of a principal series representation of G and that all
such characters are obtained in this manner (see [4h, Theorem 2], which gives
the explicit formula for the principal series characters). Thus, if ¢,..., & is a
maximal set of characters of L with g, e Wy.'A (1Si<N) such that no two of
the ¢; are conjugate under W, the O,,(1 =i N)are linearly independent members ,
of J(x,) and are precisely all the principal series characters in J(x,). It is possible
that N <dim(3(x,)).

Suppose now that 1 is regular. Then &(4) is spanned by the functions Pe
corresponding to the characters £ with Hee Wy A%, and so J(x,) is spanned by
the principal series characters that belong to it. If & is connected and 1 has the
additional property that W, -in% is a single W -orbit, dim(J(y,))=1; for a
complex G, C is connected and the condition on 1 implies that the associated
principal series representation is irreducible.

EXAMPLE 2. r(G)=2 and the symmetric space G/K has rank 1. We now have
two f-stable CSG’s L and B with Lie algebras I and b. Concerning £ we use the
same notation as in Example 1. C has at most two connected components and we
may assume that C<B< K. We can select yel, such that y-fixes C pointwise
and F=b, Let P, be a positive system of roots of (0, 1). 4,=4; »,, and
Ag=430y™1; P, contains a single real root c. Let f=aop™!; then ¢, = $p=lonC.
The components of L'(R) are of the form C* 4* where C* is a component of C
and 4% are the subsets of 4 where .21 If W, is the group generated by the
Weyl reflexions corresponding to the imaginary roots of (g, I), then W,
=Wy 10, W), 1; it can further be shown that y. Wiioy 'S Waus, Wy If C* s

® This means that Dp=0 for all homogeneous W ,-invariant differential operators (on 1) with
constant coefficients and positive order., :
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a connected component of C, there is an x*eC™ that is fixed by W, (cf. [6g,
§24] for this structure theory).

Fix a regular Aelf and let p=24.y7!. As in the previous example F(y,)= {0}
if Wy, An€=0. Let 3°(x,) be the subspace of all @ in F(y,) that are 0 on B
For @E$° (x2) let @g be the analytic function on CA™ such that gg(a)=4, (a) &(a)
(ae CA* AL’). Then Theorems 1-3 of §2.1 imply that O g is a linear isomor-
phism of 3°(x,) onto the subspace §°(4) of all analytic functions ¢ on CA* such
that (i) p*=e(s) @, Vse W, ;, (ii) vp =v(l) @, Vvep,, [ 3], and (iii) w,¢ has bound-
ary values 0 on C. Let &,,..., & be a maximal set of characters of L with
He €Wy 4, for all i, no two of which are conjugate under W,; define ¢,
=Y sewr,; £(8) (65 +&). Then {@,,..., @y} is a basis for §°(2). One may conclude
from this that 3°(y,} is spanned by the principal series characters it contains.

By Theorem 2 of §2.1, J(x,)=3°(x;}if 4 is nonintegral. Now let A be assumed
to be integral. Given @€ J(x,), there are constants ¢, with ¢,;=c¢, (se Wy_, te Wy)
such that &, Pn=Zsewnc £(s) ¢, We shall now prove the existence of a unique
@,&3(x,) such that

B)  AG)O0)= T e()Eut) GeB)  sup DO, <o,
Assume this for a moment; then, if {5, ..., s,} is a system of representatives for
We\Ws.» 3(1,} is the direct sum of 3°(y,) and the 0, (1 Zi<p).

For the existence and uniqueness of @, it is enough to fix a connected com-
ponent C* of C and show that there is exactly one choice of the constants ¢
(seWp,) for which the function ¢ = ZSEWH (s) 5" &gyoy 0N C* A™ has the follow-
ing properties: (i) ¢ is bounded on C*4*, (i) o*=¢(s) @, Vse Wy |, (iii} w,e
=Y sewy Csu 00 C*. The conditions (i) and (iii) already imply that ¢} =1 if
se WyLs;Wyand (su, 5 >0, while ¢ =0 for all other s. The relation yo Wy yop ™
S Wisg Wy shows that for these choices of the ¢, (ii) is automatic. In addition
to the existence and uniqueness of @, the above discussion leads to the following
formula valid for all a=b exp He CA* nL (b C, Hea") [6g, §247:

(4) 4.(a) 0, @)= 3 (s} &, (b) exp{ ~I((ss)o) (H)I}.

seWpg

3. The distributions @,

3.1. Formulation of the main theorem. Let G be as in §2, and in addition let
1k (G)=rk(K). We propose to discuss the construction of the invariant eigen-
distributions on G that will eventually turn out to be the characters of the discrete
series of G. Since rk(G)=rk(K), G has compact CSG’s, all such being connected
and mutually conjugate. We fix one of them, say B, < K, and denote its Lie algebra
by b. All roots of (g, b) are imaginary. Let % be the additive group of all integral

e
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elements of b*, and & ', the subset of all regular elements of .%. The basic result
of the theory is the following theorem of Harish-Chandra [6f, Theorem 3].

THEOREM 1. Let P be a positive system of roots of (8, b) and ler A =4 s, p Let
A€ L. Then there exists a unique invariant eigendistribution @ 1 on G such that

) 0:0) AB)=Youm, o) E10)  (beB),
@ (i) Sup.q g 1D ()2 16, (x)| < oo

In the following sections we shall examine the main steps in Harish-Chandra’s
proof of this theorem.

3.2. The class & of invariant open sets.  For any xe @ let m, (resp. M.} be the
centralizer of x in g (resp. G). x is called ellipticifitisin B (= K9), or, equivalently,
if x is semisimple and all eigenvalues of Ad (x) are of modultus unity. Any xeG can
be uniquely written as ¢ exp Y, where a is elliptic, Ye m, and all eigenvalues of ad ¥
are real; a is called the elliptic component of x. & is the class of all invariant open
subsets V of G with the following property: If xe ¥ and a is the elliptic component
of x, then ¢ expXeV for all Xen, for which ad X has only real eigenvalues. Mem-
bers of & are clearly completely invariant. Given any elliptic ae G and £ >0, we put

gle]={X:Xegq, [lmij<e,V eigenvalues 4 of ad X},
W [el=m,ngls],  U,[e]=aexpu, el V[el=U,[£]°.

LemMma 1. IfaeGis elliptic, there exists ¢, with <g, < 7 such that the sysiem
(u,[e], ¥, []) is adapred to a for any € with 0<e<e,.

(1)

LeMMA 2. Let aeB and O<e=e, Then
(i) U,[elnB=a exp(bru, [e]), ana
(i) Va[ednB=Usey, (U, [e]nBY:.

LEMMA 3. & is closed under finite intersections. [faeGiselliptic, then V,[¢es
Jor O<ege,. If Ved and acV is elliptic, there exists ¢ with O<e=s, such that
Vilele v,

LeMMA 4. Let Ve&. For each aeVARB let 8, be chosen 50 that 0 < 0,Z¢, and
Vil sV, Then v= aevans Valdod If V=G, there exists a Jinite subset Fo B
such that G=\J,., V, [4.]. '

These lemmas are not particularly difficult to prove.

3.3. Reduction to the Lie algebra. Letm be a reductive subalgebra of g con-
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taining b. We now wish to formulate two lemmas dealing with certain spaces of
distributions on m and deduce Theorem 3.1.1 from them.

Let M be the analytic subgroup of G defined by m. For any CSA [<m, let
P,y be a positive system of roots of (m,1), and let nmllmﬂaspm,i 0, Wy, ¢
=] lacry, Ho Put '[={H: Hel, n,, ((H)#0}. Denote by W), , the subgroup of W,
that comes from M and write

(1) p{m)=index of Wy pin Wy_.
Let vebf be regular and take only imaginary values on b. For any ¢>0 let

ufe]=mnag[e], and let J, ,{m) be the vector space of all M-invariant distribu-
tions 7" on u[¢] having the following properties:

[0} (1) (Ugm(2))” T=yx,{z) T, forall ze 3.

{ify Foreach CSAlEm, supy. tnuge [T, (H) T{H) < o0,
Lemma 1. Let TeJ, (m). Then T=0 if and only if T(H)=0, VHe 'brufe].
LEMMA 2. dim(3,  (m))=p(m).

We shall now indicate how Theorem 3.1.1 may be deduced from these two

- lemmas. We begin with the uniqueness. It is convenient to prove it in the following

form:

LEMMA 3. Let Ae #’, Veé&, and let ®@ be an invariant distribution on V such
that 20 = y,(z) @, Vze 3. Suppose that

; () sup,cvna I DEIPIO () <00,
G) (i) @@F)=0, VbeVnB'.

Then @ =10.

Let ae¥nB, and let ¢ be such that 0<e<e, and V,[e]S V. 1t is enough to
prove that @ | ¥,[e]=0(Lemma 3.2.4), or @,=0 on 1, [¢], in view of Lemma 3.2.1
and Theorem 2.1.5. A simple calculation based on (2.2.4) shows that @,e3, ,(m,).
Further, by (i} of (3), @,(H)=0, VHe brn,[¢]. So &,=0 on u,[c] by Lemma 1,

To accomplish the construction of @, we proceed as follows: Let ae B. For
each Te€3; ,(m,), let ¢4 be the analytic function on be]=bnu,{e] such that
or(H)=mn,,, (H)} T(H)for all He 'bnu,[e]. By Lemma I, T+ @ is a linear injec-
tion of J,, .(m,) into the vector space U, , of all analytic functions ¢ on b[¢] such
that (i) p*=¢(s) @, Vse Wy, p.and (il) o =Y ;. . &(s} c,e°* for suitable constants c,.
But dim (2, ,)=p(m,), and so, by Lemma 2, 7'+ ¢, is an isomorphism onto U, ,.
In particular we can find TWWe 3,  (m,) such that @rw =) ccw, e(s) &1(a) e,
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The expression for ¢ shows that 7@ | ‘Db [e] is invariant under the sub-
group of W, that fixes ¢. Lemma 3 then implies that 7 is invariant under M,
Theorem 2.1.5 and Lemma 2.2.5 now lead to the existence of an invariant eigen-
distribution @ on ¥, [&] such that

’ (I) @Ela) (b) 4 (b)_:z.se W f5('5') ‘fsl(b): bea exp({) [B]ﬁ ’b)v

(11) Supx@ Veleln G ]D(X)l 1z '@(J.a) (X)' < 0.

(4)

From (ii) of Lemma 3.2.2 it follows that (i) of (4) is valid for all be B'nV, [].

For each ae B, select §, with 0<8, <e, and let @ be the distribution con-
structed as above on ¥, [3,]. If a,a’€ B, then @ and @) coincide on B'A V,[8,.]
NV 6, ], and hence on V,[5,]n V. [6.] by Lemma 3, as the latter belongs to &
in view of Lemma 3.2.3. The existence of @ 2 0n G'now follows from Lemma 3.2.4.

3.4. Proof of Lemma 3.3.1. It remains to indicate how the proofs of Lemmas
1'and 2 of §3.3 may be carried out. We consider first Lemima 3.3.1. Let Te 3., (M)
be such that T(H)=0, for all Hebru []. It must be shown that for each CSA
tem, T'=0on Inue]. Let I, (resp. Ix) be the subspace of all elements of | where
all the roots of (g, I} take imaginary (resp. real) values. Then the proof uses induc-
tion on dim({). We may assume dim(lg) > 0; for otherwise, { and b are conjugate
under M and there is nothing to prove. Let uel* be such that Xu=x, Define

(1) I(R)={H: Hel, no real root of (m, I) vanishes at H}.

If I is any connected component of T(R)nu[e], there are constants ¢, () (sepr)
such that
@ maETE)= Y oo Dexp{pl)  (Helnr),

SEWLC

One has to prove that ¢ (I'})=0, for all s, I".

LemMa 1. (i) There exists me M such that T<h. (i) Let my be the centralizer
of I; inm. Then 1, is the center of my and lg is a CS4 of [m,, m,].

For proving (i) let ¢ =center (m), T=I~[m, m] and let T;(m) {resp. Tg (m)) be the
set of points of T where all roots of {m, 1) take only imaginary (resp. real) values.
As both b and I are CSA’s of m, ccbnlcl,; further, (m)< 1, Ty (m)S 1.7 A di-
mension argument then gives =c+T,(m), [=Te(m). It is easy to see that for a
suitable me M, (I(m))" =bn[m, m]; then I*<b. For proving (i) we may, in view
of (i), assume that [, <b. Then both b and I are CSA’s of my, so that [;2bnlI
2center(m;) 21, The roots of (m,, 1) are all real and In[my, m,] is spanned

? It follows from representation theory that if g, is a semisimple subalgebra of g and Xeq,, then ali
eigenvalues of ad X are real (resp. imaginary) if and only if ady, X=ad X | g, has this property.

2
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by the H/s corresponding to them. So In[m,, m;|<lg; by dimensionality,
[~fmy, my =1,
Lemma 1 leads at once to

Lemma 2. Let [ [e]={H:Hel,, |B(H)| <g, for all roots § of (g, 1)} ; and for any
simple system S of roots of (my, V), let T3 (S)={H: Hely, f(H)>0,VpeS}. Then the
connected components of '|(R)ru{e] are precisely all the sets of the form |;[e]
+ 1z {S) (as S varies). If W, ((R) is the group generated by the reflexions sy (f€S),
then W, ((R) fixes each element of {; and acts simply transitively on the collection
{Ix (S)}. If' S is fixed and &1} is real valued on lg, there exists se W, ((R) such that
(st) ()20, for all Helf (S).

LemMma 3. Let S be as above and feS. Define g z={H: Helg, f(H)=0,
a(H)>0, Yae S\{#}}. Then there is a CSATsm such that dim(Ty) =dim ()~ 1 and
L[el+1: s (u[e])n)nCU(, [e] + 12 (S)).

Let X, gem be the root vectors corresponding to + f such that ([ X, X_;])
=2. Let I, be the null space of § in L. It suffices to take T=1[,+ R (X;— X..,).

The proof of Lemma 3.3.1 may now be completed as follows. Take I' =1, [¢]
+15(S) in (2). Then by Lemma 3 and the induction hypothesis, the continuous
function on u[e]nl that extends @, ((n,, (I'] Tru[e])) must vanish on I, [e]
+1R, 5 50 Y ew,_ ¢(I") € =0 on I, leading to the relations

(3) c(N)+cg,s(F)=0  (seW, BeS).

Suppose c,{I"}##0 for some re W, . Select s'e W, (R) such that (s't) (H}=0,
VHeI (S). Then ¢, (I")#0 by (3). On the other hand, it follows easily from the
boundedness of Y .y, &(s) c(I') e on I that su(H)=<0, VHelf (S), if ¢,(I")#0.
So 't ] [g=0.In particcular, {s'tu, B> =0, ¥fe S, contradicting the regularity of u.

3.5. Tempered invariant distributions on m. Proof of Lemma 3.3.2. We now
take up Lemma 3.3.2. The main step in its proof is to show that if an invariant
distribution T on u[¢] satisfying (i) of (3.3.2) is tempered,® then it also satisfies (i)
therein, and hence belongs to J, ,(m). It follows from this that J, ,(m) contains
the restrictions to u[e] of the Fourier transforms of the invariant measures on
suitably chosen M-orbits in m, enabling us to verify that dim(3, ,(m))=p(m).

LemMa 1. Let I'y be an M-invariant open subset of m; let |<m be a CSA and
let T'=(I',~'D™. Suppose f is any M-invariant continuous function on I" such that
the distribution defined by f is tempered. Let fi=f | T'n\'L. Then, for some integer
r 20, the distribution defined by ), | fy on I'n\'l is tempered.

& A distribution defined on an open subset U of a real vector space V is said to be fempered if it is
continuous in the topology induced by the seminorms fi-+ supy |Ef| {fe C2(U)) where Fis a differential

operator on ¥ with polynomial coefiicients.
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For this lemma, see [6f, Lemma 17]. The proof of this lemma goes in three

stages. In what follows, for any real vector space V, we write D (V) for the algebra
of differential operators on ¥ with polynomial coefficients.
- Let L be the CSG of ¢ corresponding to [ and M = M/LnM. For meM let #it
be its image in M and let din be the invariant measure in Af . For any ge C2(I")
leto(g: H)= [y g(H™) dit (He "1, H" = H"); ¢(g:)eCZ(IA'l). Using the well-
known formula for integration on m, we find the following consequence of the
tempered nature of f:3D;e D(m) such that, for all geCe(I),

(1) ‘ f T, ((HY @ (g: H) f(H) dH|< Z supiDyg].
R lsigk T

The second stage consists in “inverting” the map g (g ‘). Let W}, , be the
normalizer of [ in M modulo LA M. Then Wi, 1, 1s a finite group that acts naturally
on M and preserves diit. We select je C* (M) invariant under this action such that
Jae 5y di=1. Let 7{m)=7(m) (me M) and let C be a compact set in M whose
image in M contains supp?7. It is then casy to show that there is a unique gpeC2(IN)
such that g, (H")=5() B(H) (HeI' A1, me M, B=Yccww.: B we have
@{gy: H)=PB(H), YHe'~'l. From (1) we then obtain, for all feC (I N'l), with w
denoting the order of War, 1, :

O || rsE rwansnt Y (g
1Zighk meC Hel 'l
el
For the third step, let ¥ (m: H)= H"™. Then an elementary analysis of the differ-
ential of Y leads to the following result: If EeD(m), there exists an integer /> 0,
E;e D), ;€M (= subalgebra of G generated by (1, m)) and analytic functions A,

on M such that, for all ge C*(I"), HeI' 1, meM,

(3) (Ef)( m)znm,l(H)nt Z hf(m)(g"w)(m;é:H;Ej)

15/%q

(this follows from Lemmas 3-5 of §3 of {5a]).
If we now use (3) in (2) with E=D,, g=g,, the required conclusion about fi
follows without difficulty.

LemMMA 2. Let T be a tempered invariant distribution on u Le] satisfying (i) of
(3.3.2). Then T€3, ,(m).

Let [Sm be a CSA. Then T'is given by (3.4.2) with I' =1, [e]+13 (S) (cf. §3.4).
By Lemma 1, for some integer r =0, the function
Heomy, (H) Y efs) ¢ (1) er®

seWr,
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defines a tempered distribution on I'. It is not difficult to deduce from this fcf.
[6f, Lemma 15]) that su(H) =0, VHelf (S), whenever ¢ (I” )#0. But then 7 must
satisfy (ii) of (3.3.2}).

Let #(m) be the Schwartz space of rapidly decreasing functions on m. For
ge@(m), &% (m) is defined by §(X)=],, ¢(¥) ¢** J¥. For any tempered distri-
bution T on m, its Fourier transform T(g)= T(J) (g% (m)).

Let v be as in Lemma 3.3.2. Define H,eib by (H,, H>=v(H) (Heb),

LEMMA 3. For any se Wy, the orbit (—iIEM is closed and admits an M-in-
variant measure o, .. o, ,, regarded as a distribution on m, is tempered, and 6,
satisfies the differential equations (u,,(z))~ ¢y s=x,(2) 6, for all ze 3.

That the orbit X is closed and admits an invariant measure for any regular
Xem is well known. That'it is tempered when regarded as a distribution in m is
proved in [Sb] {cf. §5.9). The last assertion is proved by a straightforward calcula-
tion, .

Let 5,,..., 5, (p=p(m)) be representatives of Wy, 58\Wy,_. By Lemmas 2 and 3,
6,5, | ule]e3,, (m), | 7 <p. Since the orbits (—iHM (1 < j< p) are disjoint, the
o,,s, are linearly independent. So the 6., s, are also linearly independent. A simple
argument based on Lemma 3.3.1 now implies the linear independence of
by,5,| u[e], 12 < p. Thus dim(3, ,(m))= p(m). On the other hand, if Te3, . (m),
there are constants ¢,(T) (se Wy, ¢,;=c,, V1€ W)y ) such that T, 6 () T(H)
=D cewn, ¢5) ¢(T) ™, YHe 'bru[e]. Lemma 3.3.1 then yields the estimate
dim (3, (m)<p(m)

ReMARK. A simple Fubini argument applied to the integration formula on m
shows that for almost all v the invariant measures oy,s are tempered Vse W, .
For such v, the above discussion is certainly valid. The proof of Lemma 3.4.2
for the exceptional (but still regular) v may then be completed by a limiting process.
We may thus avoid using the highly nontrivial Theorem 3 of [5b].

3.6. The distribution @%. Let 1e.#’. It follows from the preceding theory
that there is a unique invariant eigendistribution ®% on G such that

@) OF@) 40)= Yocw,.2(s) Ealb) (beB),

(1) )
(i) sup,. g |D(x)"? |@F(x) < o0.

Clearly z@% =y, (z) @*, Yze 3. The distribution ©% is somewhat less singular than
©,. For instance, on B, @ is a finite Fourier series, and is therefore bounded. In
this section we shall formulate analogous results for the other CSG’s [6f, §24].
These play an important role in invariant analysis on G.

Turorem 1. Let L be a CSG and | its Lie algebra. Let W) be the group

e
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generated by the Weyl reflexions corresponding to the imaginary roots of (g, I).
Then W\(1} leaves L (and L') invariant and @5 (a’)=0%(a) (acL’, se W(I)). More-
over, if 3 is the centralizer of 1 in 8, there is a constant C>0 such that

2 1O% (@)} = Cldet(Ad(a)— Dl 12 (aeL)).

We use induction on dim (Ix). We may assume that | is f-stable, |, = b, and
dim(lg)>0. If L,=LnK and F=Knexp(— 1), then L=L,expl, and
L;=Fexpl;. So W,(I) leaves fixed ecach component of L; and each element of
explg. Let uel* be such that L =X1

Let L7 be a component of L;, and let m, be the centralizer of L in g. Clearly
rk{(g)=rk(m,)=rk(m, n¥). Proceeding as in §3.4 (and using the same notation) we
find that I is a CSA of [m,, m, ], and that the connected components of L'(R)
are precisely all sets of the form L;" expl;t (S), where L} is as above and S is a
simple system of roots of (my, ). Fix L}, § and let ¢, be constants such that

4@ Oi(@)= 3 e(s) el (@) (aeL'nLf exply (5));

¢ W;_c

here 4, =4, ;, for some positive system Py of roots of (g, 1),

Lemma 2. Fix BeS. Then we can find a CSA Twith CSG I, and an element
Y€ having the following properties : () Tis O-stable and dim(Tp)=dim(lz)—1, (1i)
=T, (i) y fixes each element of L exp (1xnly), (iv) there is a connected component
L* of I'(R) such that CI (ENNCUL, exply (S) contains L exply g and (v)
yoWillyoy™ ' Wi(l).

Select root vectors X, p€m, corresponding to + f such that ([ X g X_g)=2
and X_p=~0(X,) (this is possible). Take T=I,+R- (X;—X_;) and y=
exp(—(—1)"12a(X,+ X _,)/4).

Let A%=4, .y~ and let d, be constants such that

Al(h)@f(h): Z S(S) dsésﬂoy“(h) (hEE+(‘\E).

seWp,

From Lemma 2 and Theorem 2.1.2 it follows that wy, (C,—dy) &, vanishes on
L} exp{lzxnl;). This gives the relations Cst Cops=dy+d,,, V5. Fix te Wi(I) and write
;=¢,;— ¢, From Lemma 2 (v}, the invariance of @% | L* with respect to Wi(I),
and the fact that Wi(I) commutes with S5, we obtain

(3) CtCo =0 (seW, BeS).

Further, if & 540, then either c, or ¢, 18 #0, and, in either case, su(H) <0, VHel z (S).
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We now argue as in §3.4 to conclude that =0, Vs. Thus &% (a')=0%(a) (acL,
se W(1)). '

For proving (2), let P, ; be the set of imaginary roots in P,. For ae L, write a;
and ay for its components in L, and exply{a=a,ag). Define, with =33, p o,

Ar (a)=8&;(ag) l_[ (C (o)1), Ay ay=Es(a) H (€ la)--1).

we Pr\PL, 1 we Py, ;

It is then an immediate consequence of the invariance under W (I} that, for some
constant C>0and all ae L' (L} explg (S)),

i (@) @%@ =C|dr (@ ) els) Eular)]-
se Wil
It is not difficult to show that the expression on the right is bounded over L}, and
that |4} (a)* =|det(Ad (@) — 1),,|, Yae L. The estimate (2) is now immediate.

4. The Schwartz space

Throughout this section G is a group of class 4.

4.1. The functions = and 0. For xeG, o(x)=0(x"") is the distance between
the cosets K and xK in the Riemannian space G/K. ¢ is a spherical function,
olexp X)={X} (Xep), and

(N ' ag{xy)So{x)+o(y) (x, yeG).

Let 7 be the unitary representation of G induced by the trivial representation
of a minimal psgrp P. The trivial representation of K occurs exactly once in
7| K. We define Z(x)= Zg(x)=(n(x) ¢, ) (xeG) where i/ is a unit vector fixed by
n[K]. E does not depend on the choice of P, For xeG let x=k exp H(x) n where
keK, H(x)ea, neN; ¢(X)=4tr(ad X | n) (Xea). Then it follows from the explicit
form of = that [4b, p. 43]

{11

(2) (x)zE(x"1)=jéxp{mg(H(xk))} dk  (xeG).

K

Z is an analytic spherical function, Z(1)=1, and 0<Z(x)= 1, for all x. Further,
for any be® let a,eW be the unique element such that b a,,ef(55+(ﬁn [Se,
Lemma 3] then, denoting by L the centralizer of K in ®,

3) g8=a,(~0} &  (qe9Q).

It is well known [7, §3 of Chapter X] that = is uniquely determined by the
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differential equations (2) and the condition Z(1)==1. This observation leads to the
relation

4 JE(xky) dk=E(x)E(y) (x, yeG).

K

In the following results we collect together a few estimates involving 5 and o.
Corollary 2 and Theorem 3 make clear the mportance of the function 2 in Fourier
analysis. '

THEOREM 1. (i) Givena, be®, there exists C=C (@, b)>0such that |2 (a; x; b)
SCE(x), Vxedl.

() If E is any compact subset of G, there exists C=C (£)>0 such thar
E(yixy,) < CE(x), Yp1, y,€E, xeG.

(iii) There exists C>0 and d=0 such that, for all he A",

5) e {—ologh)} S 5(H S C exp{ ~g(logh) (1 +o(h)"

The estimates (i) and (ii} may be derived from the explicit form of the rep-
resentation w. The proof of (iii) requires a study of the differential equations (3)
[Se, Theorem 3]. :

COROLLARY 2. There exists ¥>0 such that Z*(140)""e LY{G).

For some constant ¢>0, cdx=J(h) dk,dhdk, =k hky, ki, koK, he A*)
where

(6) ‘I(h) = H {em"ﬁ' By _ g~ 4(log fi)}m(,l)

A=Q

(the product is over the positive roots of (g, a) and m(A)=dimension of the root
space of A; cf. [7, p. 382]). The corollary follows from this and (5).

THEOREM 3.7  Fix P 1Sp=s2. Then, given a,be®, there exist a;, bie®
(1 SiZm) with the following property: For any e C*(G) with ufve L?(G), Yu, ve ®,

(7) IE"*P(afb)lw= Y. lafbil,.

1=5ism

In view of the closed graph theorem it is enough to prove that 1722 (ufo)
<o, Vi, ve®. Let g=afb. By the work of §5.8, there exist (e (1£/=r)such

? Forl£ps oo, {1, is the LP-norm.

ay

st s e, R+

e et e 830 8 854808t 111
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thatforallie 4™ and Fe H? (4", J), |F(h)P < YillLF2 ;. We apply this estimate to

F(h)=exp (2o(logh)(p)g,(n; ky1ksy; &)

where &, neR, g,k ks) =gk hk,) (ky, koK), and integrate over K x K. Thus we
find that
sup ‘exp (2¢{logh)/p) Ilgnl, <o, VeR@R.
hedt
By (5) and Sobolev’s lemma, sup, .+ E(8) ™7 [ig,ll ., = | E~¥g]l, < 0. For details,
sce [14b, §37. .

4.2. Definition of #(G). Following Harish-Chandra [6h, §9], we define the
Schwartz space €(G) to be the space of all f e C*(G) such that for allm 20, g, be ®,

(1) Fa,pem (/) =187 (1+0)" (@f)] o < c0.

The seminorms 4, ,,, convert ¥(G) into a Fréchet space (cf. also [2] for
G=SL(2, R)). In this definition, 140 may be replaced by any other function
having the same growth. It is not difficult to construct C* spherical functions t,
for example, such that (i) 0<a=(1+0) 't<f<oco, and (ii) the derivatives
Xy XYy Y {r+s21, X, Y;eg)are all bounded; for instance, if G =°G, we
may take t=1—logZ. That %(G) is a natural object of study is made clear by
the following result which is a consequence of Theorem 4.1.3.

THEOREM 1. €(G) is precisely the space of all f & C*(G) such that (1+ 6)" (afb)
eL*(G), Vm=0, a, be®, and its topology coincides with the one induced by the semi-
norms f1— ||(1+o)” (a/b)|:,.

THEOREM 2. C2(G) is a dense subspace of € (G), and the natural inclusion map
is continuous. €(G) is a Fréchet algebra under convolution.

Let y, (r>0) be the characteristic function of the set B, where ¢<¢, and
B.= B*y,P, B being spherical and e C* (G). Using the facts that (8) sup,» ¢ lafBdll.
<0 (a, be ®) and (if) for some />0, B, =1 on B,_,, Vi (cf. (4.1.1)), we find that
for any fe€(G), §,/€C2(G) and B,f~f in €(G) as t-+ 0. For proving the
second assertion let £ = Z(1+40)7* (s>0). Then, by (4.1.1),

@) B TRNSEGT ) (o) (1+o())* (v, yeG, kek).

So, if ris as in Corollary 4.1.2 and s, Z s+, (2) and (4.1.4) give the estimate (with
c=[ E*(1+0)"" dx)

3)

|£3}

& 5
5y s

WScE,(x)  (xeG).
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The estimate (3) shows that, for f, ge¥%(G), f*ge%(G), and that the map
[, g+ [ *g is continuous,

4.3. Tempered distributions on G. A distribution T on G is tempered if T has
an extension (which is unique by Theorem 4.2.2) to a continuous linear functional
on €(G).

If y is a locally summable function on G such that

(1) W= CE(x}(1+0(x))?  (for almost all xeG)

for some C>0, p=0, then  defines a tempered distribution since If ¢ ¥/ dxi
sconstiy g4, () ¥ e CP(G), r being as in Corollary 4.1.2. We shall discuss in
this section two special cases where growth properties analogous to (1) are con-
sequences of the property of being tempered.

The first result is an analogue of the classical result on measures of slow growth
[12, p. 97]; it is substantially Theorem 4 of [6h].

THeOREM . - Let 4 be a set of nonnegative Borel measures on G. Then the
Jollowing statements are equivalent . (i) there is a continuous seminorm y on €(G)
such that |{ f dm| Zy(f), for all me# and all spherical feC®(G), and (i) there
exists C>0 and g 20 such that j E(14+0) 1 dm=C, for all me #. In this case, the
convergence of the integral is uniform for me # .

Assume (i). Let G="G-V, x="x'x (xeG, °x€°G, 'xe V). For 1,,1,>0, let
Cin={x1xeG, E(°x)2e™", 0('x)<1,}. Select spherical feC®(G) with B(x)
=f{x"")20 for all x and { Bdx=1, and let f;, ,,= fxy, ,*B where y,_,, is the
characteristic function of C, ,,. Let >0 be such that e “E(x)<5 (yixp,)
se'E(x) and o('y)<ia, Vx€G, y, y,, yesuppf. Then 0=/, .21, fi, ,=1 on
Cii-ay-a and =0 outside C;, ., 1,40 Taking 7=, <i <y Ma 55 We find, Ve 4,
ty, 12 >0,

m(ctl,fz)gz Ha[,b,'is(ﬁl "i‘ﬂ,tz-l-a)
éz la:B1l s i Bb:lly sup {E(x)_l (1 +U(x))s:x@cn+2a,rz+za}-

So there exist B>0 and /20 such that, for all me.#, t,, 1,>0,
(2) m(C,, ,) S Be"(1+1,) (1+2,).
The estimate (2) implies (ii). Actually (2} is equivalent to (ii).
Our second result deals with the 3-finite K-finite functions. It is essentially

Theorem 9 of [6h].

THEOREM 2. Let e C®(G) be 3-finite and K-finite. If the distribution defined
by @ is tempered, then ¢ satisfies (1) for some C>0, p=0.
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Write T,(f)={ @f dx (feCP(G)). Then there exist a;, b,e® and p20 such
that, for all € CZ (),

(3) !Tgo(f)lg Z luﬂi.biip(f)'

1Zign

Now, by Corollary 1.2.3, there exist f,, 8, C;°(G) such that ¢ =f, x ¢ *f1, so that
T, (f)="T, (B *f*B5) (Bi(x)=F;(x ). Transferring the differentiations in (3) to
the ; we find that, for some C>0, | T, (/)| £ Cuy, 1. ,(f), ¥f e C°(G). An elementary
measure-theoretic argument then gives || Z(1 +6) PeL'(G). Now, if a, be®,
apb is both 3-finite and K-finite and T, satisfies an estimate of the form (3)
with the same p. Hence |apb| (1 +0)"Pe L' (G). Replacing ¢ by a function  as
described in §4.2 we find a(Z(1 + 1)~ @) be L (G), Ya, be®. Theorem 4.1.3 now
implies that [|Z7 (1 +1)" Pagb||,, <o for all a, be®.

As one may infer from Harish-Chandra’s work [6i], only those irreducible
unitary representations {the so-called tempered representations) whose characters
and matrix coeflicients are tempered distributions play a role in the L* Fourier
theory on G, and therein lies the real importance of the tempered distributions.
For instance, the representations of the discrete series are tempered, as one may
conclude from the L? estimates (1.2.5), as are the representations that are asso-
ciated with the various CSG’s (cf. §1.1). If = is an irreducible unitary representa-
tion whose character @, is tempered, the matrix coefficients of n defined by
K-finite vectors are of the form a(@, * f) b where a, be®, f is a matrix coeflicient
of K, and the convolution is over K; they are therefore tempered. The converse
is also true, though less trivial to establish: If the matrix coefficients defined by
K-finite vectors of an irreducible unitary = are tempered, then @, is tempered.

It is an important problem to determine the conditions for an invariant
3-finite distribution to be tempered. We shall come to this later.

5. Invariant analysis on G

In this section we shall assume that G is of class # and discuss some
aspects of the theory of integration over the conjugacy classes of G. This is one
of the most important techniques of harmonic analysis; it enables us to reduce
many problems on G to (presumably easier) questions on the Cartan subgroups
of G [6h].

We set up the map fi— I, for a CSG L, and formulate the main results in
§5.1. In §5.2 we examine how these can be reduced to the case of compact L. The
key estimate used in the proofs is discussed in §5.4. These are then applied in
§85.5 and 5.7 to study various questions on harmonic analysis. There are two
appendices: The first (§5.8) deals with some estimates of a classical nature; the
second {§5.9) examines some aspects of the theory of tempered invariant eigen-
distributions on a real semisimple Lie algebra.
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5.1. The map fi—>'F,. Let[be a @-stable CSA, [y=Inp, [, =InT, and £, the
subalgebra of & generated by (1,1); L is the corresponding CSG, L,=LnK,
Ly=explg. M, (resp. m,)} is the centralizer of Iy in G (vesp. g); M ="M, and m,
the Lie algebra of M. D, is the invariant function on G vanishing outside (L')¢
such that Dy(b)=det (1 — Ad (b)), (b€ L'); if L is compact, D, is the characteristic
function of the regular elliptic set (L)% and is denoted also by @;. P, is a
positive system of roots of (my, I); ‘4, =[Tacr, €a—1): 8;=% Y oep, 2. G=G/L,,
XX is the natural map of G on G, and d¥ is an invariant measure on G; if
beL, xeG, we write b* for b. L'(1)is the set of all be L such that &,(b)# 1 for any
singular'® fe P;. For any open set U< L, let ¢(U) be the Schwartz space of U,
For any continuous function f/ on G we put

) F(5)="F . (6)="4:(6) Dy (b)) 2 f f)ax (er)

whenever this integral is absolutely convergent for all bel.. Put
@ T=ePoloe™  (eg).

TuroreM 1. For each f€€(G), 'F; is well defined and lies in 4{L'). The map
J'Fy is continuous from € (G) to € (L'). Moreover, for all ze 3, f4(G),

3 Fop= "t (2} 'Fy.

THEOREM 2. Fix fe€(G) and beL. (i) If beL'(I), then 'F, extends as a C®
Sunction around b. (ii) Let b¢ L' (I) and let S;(p) be the set of all singular Be P, with
$o(B)=1. Then, for any (e R for which [* = —{, VBeS(b), '{ 'Fy extends as a con-
tinuous function around b. In particular, if w, =Hﬂe p, Hp, '@, 'F, extends to a con-
tinuous function on L.

Let fe P, be singular, Ly={b:be L, {;(b)=1}, and let L), be the set of all beL,
such that £, ; are the only global roots that are equal to 1 at b. Let 3 be the central-
izer of Ly in g and select a CSA 1, < 3 that is not conjugate to [ in G let L, be the
corresponding CSG. Note that be L) (I} and so, for any f €% (G), 'F, ,, extends
(by Theorem 2) to a C* function in a neighborhood of b in L,. For any function
ge€(L'(I)) and any be L) we write

g(b£)=lim g(bexp(—1)* tHp).

=0t

Let y be an element in the adjoint group of 3, such that P=(1y).

* Given feP which is cither real or imaginary, let 3=gm(C-Hﬁ+C-Xﬂ+C-X_p+C'XHB). fis
called singular if 3 is not of compact type. :
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TuroreM 3. Let the notation be as above. Then there is an automorphism { - {
of £ and a C*® function ¢ on L such that, for all 6e 8, be L,

) (CFr.)) b+) = 'Fy, 1) (b=)=c(B) € 'Fy,1,) ().

Suppose G is as in §3. The above results then suggest a simple modification of
the definition of "F, to simplify some of its formal properties. Let L be a CSG;
Ad=4d; »(P=Py)is a positive system of roots of (g, ). Let

al)=si;e ] &@©)-1) @GeL).

ae P, arcal

Then we define, for all fe%(G),

) P 0)=F, 0= ®40) | 16945 (er),

) _
Changing P to another positive system P results in merely multiplying the RHS
of (5) by a constant C{P, P')= +1. Let us now choose P so that it contains the

complex conjugate of each of its nonimaginary roots, and let P; be the set of imagi-
nary roots in P. Then a simple calculation shows that

(6) Fpb)=C s(byfFp(b)  (beL, f€%(G)
where =43 ,_p a. So
(7) sz=.ug,'1(z) Ff (fqu(G)’ 253)'

Moreover, if { is as in Theorem 2, {F ; extends continuously around b. In particular,
w,F, extends to a continuous function on L. Finally, Theorem 3 may be refoi-
mulated in the following manner: There is a nowhere vanishing locally constant
function ¢ on L; such that, for all {e £, be L,

(8) (CFs,0) (b+)—(F 1) (b—)=c(b) (F°F 1.1.,) (B).

5.2. Reduction to a compact CSG. The first step in proving these theorems
is to come down to the case when L is compact. Let Q=MCN, be a psgrp with
C < Ly. For any continuous function f on & we write

(1 fg(ml)r-dg(ml)j Flmydn  (meM,=MC)

whenever this integral is absolutely convergent for all m; (certainly for f e C,(G)).
If feCP(G), then foe CP (M), and for all ze 3, a, bemy,
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bea"—*(’b_fal)Q (aI:‘dé‘oaon, rbzdgobodé 1)

(2)
(Zf)Q mJu'g;fnu (Z) fQ .
If /e C.(G) is spherical, JoeC{M,) and is spherical on M, ; moreover,
(3) | j Exe, fo dml-—wj Ef dx
My G

with dx and dm, suitably normalized (independently of f). These results are not
difficult to establish.

LemMa 1. There exist ¢=0, and for each 120 a constant C,;>0, such that Jor
allmieM,,

(4) do(m,) f E(myn) (1 %a(mm))"‘“” dn S CEy, (my) (1+a6(m,)~",

Ny

the integrals converging uniformly when m, varies over compact subsets of M |.

First assume /=0, Let r be such that ¢= [ £2(1 +0)""dx<co. Then a direct
calculation shows!! that

f E{mn) (140 (m,n)) "y, (m,) do(m)dm, dn=c.
M x Ny

From this and (2) we conclude that given u, veIN,, there exist u,eM, (1 <i<s)
such that, for all f'eC®(G),

15iss

J |u(EM1fQ) vl dm, < j EMl 'uiﬁ)i,Q dmy Zc¢ Z ﬂu,-,u,-:r(f)-
15igs
M,

My

Theorems 4.1.3 and 4.3.1 now give us what we want. The result for />0 follows
from the following estimate [6h, §§42-43]: There exists ¢ >0 such that

(%) I+a(mn)ze(l+a(m,)) (nzleMl,neNl)_.

Lemma 1 yields at once

" In proving this we use the following generalization of (4.1.2): If 7 is the function kinn
= Zg, {1} dom,} ™! on G, then (cf. f6h, p. 101))

(%) E(xy=lx, t(xk,) dk, (xeG, KlanMl):

One proves {*) by showing that the RS is spherical function satisfying (4.1 3),
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Lemma 2. If fe%(G), fp is well defined and lies in € (M,); fio [y is continuous
from €(G) 1o €(M,); and (2) is valid for all fe¥€(G).

Lemma 3. There exists a constant ¢>0 such that, for all fe C(G),
(6) ‘ "Fp(b)=c'I,(b) (belL’)
where fis defined by f(x)= [ fkxk™') dk (xeG).

Observe that L is a CSG of M,. If C= Lg, these lemmas give us the required
reduction, as L, is a compact CSG of M. For Lemma 3 note that (KN, M ) =G
and that dk dn dm ~d%. So after a simple calculation we find that there is a con-
stant ¢, >0 such that for all feC,(G), bel/,

J‘ f(bx) dX=c¢y- { _7(”?*?1*) dn dm

& Ny xM
where m*=mbm~1 and n*=m*nm* 'n~'. For fixed m, ni—>n* is an analytic
diffeomorphism of N, onto itself, and dn*=|det(Ad(m*)—1),,|- dn=dy(m*)"!
- |D(bY)** dn. This gives (6).

5.3. Proofs of the main theorems. The second and key step in the proof of
Theorem 5.1.1 is the following lemma which we shall discuss in §5.4.

LemMa 1. Let L be compact and ¢y, the characteristic function of (LS. Then
there exists g20 such that @ E(1+06)" %€ L(G). In particular, for any a, be®,
fr oL (@), is a well-defined continuous seminorm on %(G).

We shall indicate briefly how Theorem 5.1.1 (for compact L) follows from this.
First we show that, for any feC?(G), 'F,e C*(L') and satisfies (5.1.2) (cf. [5d]).
Write 'd="4,, d="0y, a(z)=es py(z)oe™’ (ze3). We then obtain the following
estimate: There exists ¢>0 such that, for all fe C?(G),

0 [ werrra mzeip e

2
We now apply?? Theorem 5.8.4 and Lemma 1 to conclude that 'Fr,e H*(L), and
that there is a continuous seminorm v on 4(G) for which ['F sBNEv(S), vbel,
feC2(G). Theorem 4.3.1 now gives the following estimate for some ¢=0; this
estimate leads easily to Theorem 5.1.1:

12 If fe C2(G), we may already conclude from Theorem 5.8.4 and Lemma 5.2.3 that for any CSG
L,, 'F, 1, vanishes outside a compact subset of L, and each of its derivatives is bounded on Lj;
Lemma 1 is needed only when fe#(G).

~a
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@) sap (D [ 509 (14007 x<co.

It is interesting to observe that for general L{not necessarily compact or 6-
stable) one can deduce the analogue of (2) from Theorem 5.1.1 with the help of
Theorem 4.3.1. In fact, given L, there exists ¢ > 0 such that

(3) d4ot)ze(l o) (el xe)

as may be deduced from (5.2.5), Consequently we have the following estimate
[6h, §17]: there exists q=q{L)=0 such that for all [1z0,

(4 sup |D(B)*>(1+a (b)) f E(b¥) (1 +o~(b*))'<q+” d% <o,

bel’

G

We now consider Theorem 2. One may assume L to be compact and establish
the results concerning 'F s around each semiregular point of L; Theorem 2 would
then follow from the fact that 'F rand its derivatives are bounded in 1..13 In other
words, both Theorems 2 and 3 of §5.1 would follow from a study of 'F, in the
neighborhood of an arbitrary semiregular point of L. Furthermore, in view of the
continuity of the map f+'F 1> 1t is enough to do this for f lying in CZ{G)ora dense
subspace thereof. This observation enables us to come down to the case when g is
semisimple.

Fix a semiregular be L. We select a system (1, V}adapted to b (we shall use the
notation of §§2, 3). Now there are invariant functions ge C (G)suchthatg=1ina
neighborhood of b in G and supp g< V. Consequently it is enough to study 'F rina
neighborhood of b in L for fe C* (V).

Let G =G/M,, Mf=M,/M,AL and let % dX, y*, dy* have their obvious
meanings. Given f e C*(V), xe G, and He'lnu, we define J{x:H)= f((b exp HYY).
Then there exists a constant ¢>0 such that, for all H, fas above,

(5) jf((b exp HY) d}?me(f F 1Y dy*) d3;
e G My
13 The principle we are appealing to can be formulated as follows. Let X be a real Hilbert space of
finite dimension d; B, an open ball with center at 0; Wy, ..., W, distinct linear subspaces of dimension
d—1;and f, a C* function on B' = B\UJ; W, such that each derivative of fis bounded on 8. Suppose
05k 500, and that for each i (1 SiZn and each xeBN(WA ;4 W), there is a neighborhood N, of x

and a function . of class C* on M, such that y, =fon N,nB' Then there is a function  of class Cton .

B such that y= fon B'.
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here the inner integral on the RHS depends only on X and defines a function
belonging to C*(G), and it is this function that is integrated over G. Since
dim[m,, m,]=3, the orbital integrals over M} in (5) are accessible through
explicit calculation. Theorems 2 and 3 follow without much difficulty from these
calculations [6¢, §7-10].

5.4, Continﬁity over € (G) of L'-norms on the elliptic set. Proof of Lemma 5.3.1.
Lemma 5.3.1 would follow if we establish the following: there exists ¢>0 such
that, for almost all xeG,

{1) J- pp(xk) dk<cZ(x) (L compact).

We shall obtain (1) as a consequence of the following more general results [6g,
Theorems 4 and 5]:

Let L be any @-stable CSG; then the function @ x—{D((x)] " ** is locally
summable on G, and there is a constant ¢ >0 such that, for almost all xe G,

(2) j @1 (xk) dk S cE(x).

K

The function |D|~/? is locally summable'* on G [6e, §28]; ¢ is locally summable, -
as sup,.. o (1D (x)|"/2 91,(x)) < co. The LHS of (2) is thus finite for almost all xeG.
We prove (2) by induction on dim(G). Let I be the set of all feC.(G) that are
spherical and =0. For any invariant locally summable function @ on G write
@, (x)= [ O (xk) dk; O, is locally summable, spherical, and{g Of dx={; @, fdx,
Viel!; if © is 3-finite, 8,eC*(G). We may also assume G="G.

Let dim{Ly) >0 and ¥, be the characteristic function of ()™, M being as in
§5.2 with C= Ly Then, by Lemma 5.2.3, there exists ¢; >0 such that, for all

Jell,
(3) JqoLf dx<¢, J @}t (m) fo(mb) dm db.

G MXLgr

Estimating ¢ by the induction hypothesis and using (5.2.3), we find that for some
constant ¢, >0 and all feI7, the RHS of (3) is Sc,fq Ef dx. We are thus left with
the case of compact L. Since both sides of (2) depend only on Ad(x) we may
assume that G < G, where G, is complex, semisimple, and simply connected. As L
is now connected, (') is contained in the component of 1 of G, and so we may

14 This follows from the fact that [, 'Fy 1 | db< oo for all fe C¥(G) and all CSG's £, (cf. foot-
note 12).
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suppose that G is connected. We write L = B and use notation of § 3.

The proof of (1) is difficult because for a given xeG it is not a simple matter to
determine the set of ke K for which xk is elliptic. If @, is the character of a finite-
dimensional representation n of G, |@, (y)|<dim(n) for all elliptic y; and by
considering all possible = it is not difficult to establish the following weaker result
as a first step towards (1) [6g, Lemma 42];

(4) Iim_ (@g)o (x)=0.

The main idea in Harish-Chandra’s proof of (1) is to use the distribution @* = @}
in place of @,; here =1, p @ and @} is defined by (3.6.1). @* =1 on (B)%; and,
unlike @,, it is of slow growth on all the CSG’s of G.

A simple calculation shows that if {X,,..., X,} and {X,,,,..., X,} are ortho-
normal bases of f and p respectively, and if = X? 4+ -+ X2, then g@* =0, whence
g@§ =0 also. Further, the estimates of Theorem 3.6.1 imply that, for some con-
stant ¢>0 and almost all x,

() 9% (x)—(ep)o (¥ Zc 1 SZ{ (@rdo (%),

- Ly,..., L being a complete system of noncompact CSG’s of G. From (4), (5) and
the induction hypothesis we find that lim,.. , @%(x)=0. The maximum principle
for the (second degree} elliptic operator g implies that @% =0. But then (1) follows
from (5) and the induction hypothesis.

It remains to sketch a proof of (4). Let X' be the simple system of roots of (g, a).
Extend a to a CSA fyand let S be the simple system corresponding to an ordering of
the roots of (g, b) that is compatible with a*. If (4) were false, we can find y>0,
Fg X, and {H,},;, from Cl{a*) such that (i) A(H,)=0O(1) or - + o0 according as
AeF or e2\F, and (ii) (¢p), (a,) =7 >0 for all n, where a,=exp H,. Let S’ be the set
of all Be S whose restrictions to a are in R+ F, and let © be the irreducibie representa-
tion of G whose highest weight A is such that ¢4, 8> is =0 or >0 according as
feS oreS\S. I I is the set of uehy* of the form Y, s ¢(B) B with ¢(8) =0 for all B
and ¢(f)>0 for some feS\S, then it can be shown [6g, §22] that Aer", and that,
for any weight A’ A of n, A—A'el". Let uy, ..., u, be a basis of weight vectors of x,
with 4, as the weight of u; and A, = 4; and let (a;;(x)) be the matrix of n(x) (xeG)
in this basis. If K, ={k:keK, a,k is elliptic}, the inequality [0, (a,k)|<p (keK,)
then implies that

la (K Spexp{—AHEH)} + ¥ lauk)exp{—(A~A)(H,)}  (keK,).

25is

So K, < {k:]a,; (k)| £7,} where 1,—0. Since {k:ke K, a,, (k) =0} has measure zero,
we find that (¢p) (a,) =[x, dk—0, a contradiction.
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It is clear from our discussion so far that the map f— f, establishes an intimate
connexion between problems of invariant analysis on G and those on M. This
connexion actually goes much deeper than the above results would seem to
suggest, and it may be of some interest to look into this a little more closely. We
have G=K exp(mmnp) CN, and for xe G let u(x), ¢(x) and n(x) be the components
of x in exp(mnyp), C and N, respectively. Then we have the following formula,
valid for all continuous functions fon G with |~ (1 +6) f||, <o for all r=0:

(6) (o= J [ oM dk (xeG).

Let us now write T, for the map which is dual to the map f i— fo. Then, (6) shows
that for any tempered invariant distribution r on M It T, (1) is a tempered invariant
distribution on G. Moreover, for such 1,

(7) :‘ ZTQ (T) = TQ (nug,'nu (z) T‘) (Z € 3) :

In particular, if 7 is an eigendistribution on M, T;,(7) has the same property on G.
Explicit calculations show that if 7 is the character of an irreducible unitary rep-
resentation 7, of Q that is trivial on Ny, T,(z) is the character of the representa-
tion of G that is induced by =,

5.5. Teémpered invariant eigendistributions. In this and the next two para-
graphs we shall use the foregoing theory to study various questions of harmonic
analysis on G. For simplicity we assume in this paragraph that G is as in §§2 and
3 and use the notation therein,

THeEOREM 1.  Let @ be an invariant 3-finite distribution on G. Then the following
statements are equivalent :

(i) Given, any CSG L, there exist C=Cy >0, g=g, 20 such that ¥, p(a)l
sC(+a(a)! forallacL'. '

(i) There exist C>0, q>0 such that 1@ (x)| £ C|D(x)i" Y (1 +o(x)? for all
xel'.

(ii) @ is tempered.

If these conditions are satisfied, then

o o] ewswa  (reve)

the integral converging absolutely.

From (5.5.3) we see that (i)=>(ii). Further, (5.3.4) shows that, for some ¢20,
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(2) J D) T2E(x) (1 +o(x) 4 dx <o,
G

The implication (ii)=(iii) as well as the last assertion follows at once from {2). For
the proof that (iii)=(i) sce [6h, § 19]; the main argument here is similar to but more
delicate than Lemma 3.5.1.

COROLLARY 2. The distributions @, (Ae &’} are tempered.

COROLLARY 3. Let @ be an invariant eigendistribution such that the corre-
sponding eigenhomomorphism is regular. Then @ is tempered if and only if
() sup [D{)]1/? [0 ()| < co.

xe G’

5.6. The relation (wF) (1)==¢f(1). If G is compactand B is a maximal torus,
then Fy zis a C* function on B and its harmonic analysis leads at once to the
Plancherel formula. It is tempting to suppose that the same method would yield
significant results even in the noncompact case. While this turns out to be sub-
stantially the case, complications arise because the functions F, are no longer
C*, and the jumps of these functions and their derivates cannot be ignored.
Following Harish-Chandra we shall formulate Theorem 1 below as an important
step towards the Plancherel formula ([5d], [6h]; see also [3]). In §7 we shall see
that it leads to a complete determination of the discrete series.

A CSG L will be called fundamental if L has the maximum possible dimension.
It is known that any two fundamental CSG’s are conjugate in G and that L is
fundamental if and only if (g, I) has no real roots [5b, §8].

THeorEM 1. Let G be of class #. Fix a CSG L and let wy=]],cp, H,. Then,
if L is not fundamental, ('w,/F, ;) (1)=0 for all fe%(G). :

Suppose L is fundamental. Let g=%(dim G/K—r1k G+1kK).}° Then there is
a constant ¢>0 such that for all fe¥%(G),

(1) F)=(=1F e('miFy ) (1).
If G is as in §3, (wF, [} (1)=0 for all fe%(G) for nonfundamental L, while for
Sundamental L,

@ W= elmF ) () (Fe%(G).

We discuss this when & is as in §3. If L is not fundamental and « is any real
root of (g, 1), we observe that F,, is invariant under s, on L'nexpl. So
(@ Fy, )= —(w Fy, ) on expl, implying (w, F; ) (1)=0. Let L be fundamental
and let

13 gis an integer 20,
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(3) r(f)=(@.F;,) (1)  ([e4(G)).

I"is an invariant tempered distribution. A simple argument shows that the support
of I is contained in the set of unipotent elements of G. We may thus transter I
to the Lie algebra. The theorem then follows from the work 0f§5.9.

5.7, Cusp forms. Let G be a group of class 5. Following Harish-Chandra
[6i, p. 538] we shall define a cusp form on G to be any f €(G) such that, for any
psgrp Q@ =MCN; #G,

(1) j flxn)dn=0  (x€G).

°(G) denotes the sct of all cusp forms on G. It is a closed subspace of ¢ (G) invariant
under all translations the estimates (4.2.3) and (5.2.4) imply easily that it is a two-
sided ideal in € (G). The importance of °% (G) for harmonic analysis on G lies in the
fact that its closure in L*(G) is precisely the closed linear span of all the subspaces
of [2(G) that are irreducibly invariant under the regular representation. We shall
prove this in §7 (heuristically, (1) expresses the condition that f be orthogonal to
the principal series of representations associated with Q). In this paragraph we
shall formulate some of the properties of cusp forms. Theorem 1 below is especially
noteworthy; it reveals the real reason why the harmonic analysis of a cusp form
involves only the discrete series.

THEOREM 1. Let fe°€(G). Then 'F 1 ,.=0 for any noncompact CSG. If Lis
compact, 'F, ; extends to a C* function on L.

The relation (5.2.6) (extended to % (G)) gives the first assertion. If L is compact,
Theorem 5.1.3 implies that 'F, ; is C* around each regular or semiregular point;
this implies the second assertion (cf. footnote 13).

THEOREM 2. Let f be a 3-finite function in €(G). Then [€°€(G). Moreover,
°@(G) is the closure of the space of 3-finite K-finite functions in € (G).

For the second part see § 7. For the first let f €€ (G) be 3-finite and 0 =MCN,
#G a psgrp. Then for all me M, ar f,(ma) is C-finite on C, hence =0. So fo=0.
This implies easily that fe % (G).

TueoreM 3. °%(G)+ {0} <G has a compact CSG.

Suppose there exists f €°%(G), f#0. If no CSG is compact, 'F, =0 for all L.
Hence f(1)=0 by the work of §5.6. Replacing /by its translates, f (x)=0 for all x.
The converse follows from Theorems 6.1.2 and 6.1.3.
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5.8. Appendix. Some estimates in a classical setting, The results described in
this paragraph assert that in certain situations one can estimate sup norms by L°-
norms (1 £ p < c0). These estimates are closely related to those obtained by Harish-
Chandra in the context of Theorem 3 of [6e].

We fix a real Hilbert space V of finite dimension d; S is the symmetric algebra
over V.; S, <S5 a subalgebra such that 1eS, and S is a finite module over Se.
If USV is open and we C=(U) is >0, H*(U, w, Sy} denotes the space of all
JeC?(U) for which |11, .=y In/1"w dx)"? < co, Ve S, (we write H7(U, w)
when S, =8); H*(U) is the space of all feC*(U) for which |5 [l <o, ¥yes.
We topologize these spaces by the corresponding seminorms. B(x, a) is the closed
ball of center x and radius a>0.

LEMMA 1. Fix U, w as above and a real Junction ¢ on U such that 0<e{x)=1
and B(x, e(x)}< U for all xeU. Put o{x)=inf, g con W(P). Then there exists an
integer b0, and, for each £€S, a continuous seminorm ve on HP(U, w, S,) such

that
(1) S =e()™ o)™ v(f)  (xeU, feHMU, w, Sy).
In particular H(U, w, S,) is Fréchet.

As §'is a finite module over Sy, we may prove (1) with some b=b(¢). Let 4 be
the Laplacian of V; D=1—4; and k, (2r> d), the tempered fundamental solution
of D', k,eC* 4" 1(P) is C™ on V\{0}, and, for nesS of degree n, (nk,) (x)
=0(llx]"?") for x— 0. Fix {8, let s=d+1 +deg(¢), and choose 44,..., 7,,€5,
such that (DY"=3", < ;<. #,(D°¥"~4. Then, for all ge C=(¥) and all xe ¥,

(*) 9(:8)=_ 2 | knlx=y;&)g(vin) dy.

We now select “localizing” functions e C* (U) for xe U such that {fosy, <1
and ¢, (y)=0 or 1 according as ||y—x||>3e(x) or <je(x), and (ii) if (€S, there
exists ¢;>0 with [({,) (W) S e (x) ¥ for all yeV, xe U (cf. [14b, §3]). On the
other hand there exist {p 0,68 with the o i, Daving zero constant terms such that
for all he C*(V), nyoh=hit;+ 3 s << ae(o)eh) {, (1 £j=<m). Taking g= fiy, in (%) we
obtain, for all feC*(U), xeU,

f(x;<f)=1$Z< Kis(x =180 (¥) £ (vim) dy
== B{x, &(x)
+ 2 X f Fi o0 £ () dy;
15jsm 1Zg=M

()= fy—x| 23 (x)

i
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here F; , (y)=k;(x— ;) ¥ro(y;0;,) and (] is the adjoint of {,. The estimates for
k, and {y/, now lead to (1).

THEOREM 2. Let /e V¥ be nonzero (12 jSq); V' ={x:xeV, 2(x)#0,Vj}; U,
a union of components of V'; and suppose that, for some ¢>0, rz0,

(2) : w(x)gc(l +m'f1x|lj(x)|’ 1)“r (xe U).

Then HP(U, w, So) <= H® (U), the inclusion map being continuous.

It is easy to come down to the case where the 4; are real on ¥ and U is the set
where they are all >0; this can then be handled with the help of Lemma i (cf.
[14b, §3]). We mention two situations where the conditions of Theorem 2 are
satisfied :

(i) w(x)=T]]; |14;(x)I* (a;>0 are constants), and -

(ii) the A;arerealon V, Uis the set where they are all >0, and w= L —e %)

Let € (U) be the Schwartz space of U.

CorOLLARY 3. Let w{x)=1; 14;(x) (a;>0 constant). Fix a subalgebra P, of
the algebra P of all polynowials on V, such that 1€ Py and P is a finite module
over Po. Then G(U)={f:gfe H*(U, w, S,), Yge Py}, and the topology of €(U)
coincides with that induced by the seminorms fi {E(gf)| . » (E€So, gePy).

Let 7 be a compact Lic group whose identity component is abelian and has '
V as Lie algebra. Let Q=] [, <;<,{x;— 1} where the x; are one-dimensional charac-
ters of 7' that are =1 on any component of 7. Put T"'={b:beT, Q(b)#0} and
define H?(T", Q, S,) and H*(T") in the obvious way. These are Fréchet spaces. '

TuporeM 4, HP?(T', Q, Sp)=H*(T") as Fréchet spaces.

We fix fe HP(T", 2, S,), be T, €S, and show that for some neighborhood N
of b, |€f ||, 1+ < 00. We may assume that x;(b)==1 for all j. Let 4,6 V'* be such
that y,(b expx)=exp {(—1)"/22;(x)} (xe V'); write w(x) =] ]; 4;(x)| and V" as before.
Clearly there exist o, f>0 sufficiently small such that |Q(b expx)|=fiw(x) if
x| S, and @ (x—f (b expx)) lies in HP(B(0, 20)n ¥, w, Sp). We now fix a com-
ponent ¥* of V" and apply Lemma 1 with U as the {(convex) open set ¥ nB(0, o)
and &(x)=4min (20— [x||, min [|A,]] ! |A;(x)]). As o (x)=(e(x)/2)%, there exists an
integer /=0 such that, for all neS; sup,.ye(x) (@) (x)| <oo. This implies that
1@l w<oo. In fact, fix xoeU and write @,(f)=@(x,;;¢) where 05151, x,
=(1—£) x+1xy (xeU). Then there exists y>0 such that e(x,)2yt for all xeU,
0< <1, and so we can find constants L,,>0(m =0, 1,...) such that |p% ()| £ Lt~
VYmz0, xeU, 0<t=<1. The arguments of [14b, §3] now lead to the desired con-
clusion.
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5.9. Appendix. Tempered invariant eigendistributions on a semisimple Lie
algebra. In this appendix we shall describe some important results in the theory
of tempered invariant eigendistributions on a semisimple Lie algebra g. The main
references are [Sb], [5¢], [6¢].

Let g be as above, and G, the adjoint group of g. Fix a CSA [ with CSG L.
Let G*=G/L; x*=xL (xeG); and dx*, the invariant measure on G*. Let P be a
positive system of roots of {g, }; =[],ep & =] scpr H,. For pel(g), p is its
restriction to [. We often write 8(g) for the differential operator corresponding to
geS{g,). Write ep(H)=5gn[ ] cp, ureas *{H) (Hel'). €(g) is the Schwartz space of
g. We define the Fourier transform map on %(g) and its duval in the usual way

(USing < st >)'
TueoreM 1. For any fe€¥ (g) and Hel',

(1) Voot n(h) | 78 dx

is well defined, the integral converging absolutely. ;€ 6 (U') and fro\ ; is a continuous
map of 6(g) into €(I'). Moreover

(2) Yo ™0 (r) Wy (pel(g), fe¥(g)-

THEOREM 2. Let '(I) be the set of all Hel where no singular imaginary root is
0. Fix fe€(g). Then \; extends to ¢ C* function on U(I). Suppose Hel and S;(H)
is the set of all singular imaginary roots in P vanishing at H. If (e S(L,) is such that
(0= —{ for all Be S;(H), then 8(() Y, extends as a continuous function around H.
In particular, 0(w) Y, extends to a continuous function on 1.

The proofs are similar to those of the corresponding results on the group. In
Theorem 1, the estimates furnished by Theorem 2 and Corollary 3 of §5.8 enable
one to handle the convergence problems. It follows from these results that for any
Hel' the invariant measure on HY is tempered. We write

o ulh)= | )it (reel).

TuEOREM 3. The distribution &y is invariant and 8(p) 6y =p((—1)'*H) 64
(pel(g), Hel'). Suppose 1,29 is a CSA, and y is an element of the adjoint group of
q, such that U=(l,).. Then there are uniquely defined locally constant functions
e,(- 1) (se W) on U x 1y such that (writing 7, =moy™ ')

(4) n (H)n(H)ég(Hy)= Y &ls)c(H: Hy) MG (Hel', H,ely).

se WLc




CHARACTERS AND DISCRETE SERIES FOR LIE GROUPS 85

Since é is an invariant eigendistribution one obtains {4} with ¢,(H: -) locally
constant on I} for all Hel’. Also it is easy to show that ¢,(-: H,) is C* for all
H, el}. The relations (2) are then used to conclude that ¢ (- : H,) is locally constant
on [' for all H, l}.

TueoreM 4. If | is not fundamental, (0(w) ) (0)=0 for all fe¥ (q). For fun-
damental |, there exists a constant ¢ >0 such that, with q as in Theorem 5.6.1,

(5) of O)=(-1y (0@)¥,)(0) (fe#(a).

The first assertion is proved as in Theorem 5.6.1. Let 1 be fundamental and
y()=(0{@) ¥ ) (0) (fe¥€(g)). It follows from (2) that 7 is I(g)-finite, and from
(4) that $ is locally constant on g’ must be a constant [6d, §10]. So, for some
constant ¢;, y(f)=c,/(0), V/e€(g). The proof that {—1)%, is real and >0 is,
however, delicate. It depends on the construction (based on some work of de
Rham) and properties of invariant fundamental solutions to the differential
operators 8(w)™ (m = 1) where w is the Casimir element in /{g) [6¢c, §11--13].

6. Behaviour at infinity of eigenfunctions

6.1. Outline of the main results. We shall now take up the problem of
showing that the Fourier components with respect to K of the distributions &,
lic in L2(G). As these are tempered (Corollary 5.5.2), we may subsume this under
the general problem of determining the behaviour, at infinity on G, of tempered,
K-finite, 3-finite functions.

Let G be a group of class #°. For any finite-dimensional double representation
t=(ty, 15} of K in U, let &(G:7) be the space of all tempered 3-finite functions

feC®(G:1). As G=KCl{4%) K our problem is that of determining, for

fesf (G:1), the behaviour of f{a) as a— oo in Cl(4"). Since A(loga) may not
tend to oo for all A& X (the set of simple roots of (g, a)), we put for each F¢ X, (H)
=min, .\ A(H) (Hea), and study for arbitrary F how f(a) behaves when
pr(loga)— oo (Cl(A*)2a- co in symbols).

Fix F and let Pr=M p= MpApNp be the corresponding standard psgrp; let
Mir=\Uaon: pran>o Kp(exp H) Ky. Then for any ze 3, there is a differential opera-
tor F, on M}y such that (i) zg ={dy * ot (z) o d) g + E,g on My for all ge C*(G:7),
and (ii) as functions of (i, @) (me My, acAy), the coefficients of E, go to zero
when a-»co. Thus, if feC®(G:7) is any tempered eigenfunction (zf=yx(z) f,
Yze3), the function m+dp(m,) f (m,) on M{; satisfies certain differential equa-
tions which are perturbations of the equations yp(z) h=x(z) h (ze 3). It follows from
this that for a suitable tempered solution f; of the unperturbed equations one can
approximate dg(ma) f(ma) by fr(ma) when 4p3a— co. The knowledge of these
fr, together with estimates for {dg(ma) f (ma)— fp{ma)|, then yield a complete pic-
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ture of the asymptotic behaviour of /. When generalized so as to take care of
3-finite functions, this method leads to the following theorems which are the main
results of the theory. In essence this is Harish-Chandra’s method (cf. [6h, §27-31],
[51, §§2-8]; cf. also [14]); £ is the so-called constant term of [ along the psgrp
Pg.

THEOREM 1. . Let G be as above and fix fes#(G:1). Then, for each F¢ X, there
is a unique freof (M, 1) (tp="1| Ky) such that, for all me M,

(1} |de(mexptH) f(m exptH)—fp(m exptH) — 0 (t—++o0, Heaf);
ur(2) fr=0 for all ze 3 for which zf=0. For any x>0 let

(2) AV (Fi)={a:aeCl(4"), Br(loga) = xo(loga)} .

Then there exist y>0, =0 and for each >0 a constant C, >0 such that
(3) [f (@) =dp(a)” (@ SCE(@) "™ (1+o(@)  (aed™ (Fix)).
Finally, F'c Fg X, we have the transitivity relation

(4) (f F)F’ =f F -

THEOREM 2. Let G, f#0 be as in Theorem 1. Then the following statements
are equivalent: (i) fe IF(G)®U, (ii) fr=0 for all F¢ X, and (ili) fe€(G)@U. If
these are satisfied, then G ="°G, and there exists y>0 such that |afb|=O(E**7) for
alla, be®, .

TueoreMm 3. Let tk{G)=rk(K). Let bt be a CSA and A, a reqular element
of b¥ that is real valued on (—1)'/?b. Then any fe C*(G: ), which is tempered and

satisfies the differential equations zf=y,(z) f for all ze3, lies in ¥(G)QU. In

. particular, if G and @, are as in §3 (Ae L"), the Fourier components of @, are all
in%(G).

Our aim now is to sketch the main lines of arguments in the proofs of these
theorems. We may assume G="°G.

6.2. The differential equations on M. Initial estimates. Fix F. For meM iF
let yp(m)=|Ad(m~ 1), . ; me M{p<>yp(m)<1. Let & be the algebra of functions
on My generated (without 1) by the derivatives of the matrix coefficients of the
mappings

br(m—(Ad(m ) —Ad(0(m~ ")).}) and cp(ms Ad{m™ ), be(m)).

r

It is known [14b, §47] that for each ge %, there is c=c(g)>0 and r=r{g)=0
such that
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(1) gl S cyelm) (1—yp(m) ™" (meMyy).

We note that ® is the direct sum of 8{ny) ® and M, K. Let v ® — MR
be the corresponding projection. It can be shown that

2y _ vpl2)=dp Lo pip(2)edy  (2€3).

The transfer of the differential equations satisfied by members of &/ (G:1), from G
to M, is based on the following [14b, §4]:

LemMa 1. Let be®. Then there exist € Myp, &, (€K, and g;:€ Sy (1£i9)
such that, for all ge C*(G: 1) and me M},

(3) g(m;b)=g(m; VJE'(b))"“l Y gilm) vy (&) gl 12 ().
Eizq :

Let f e/ (G:7) be nonzero and 3,=1{z:2€ 3, 2/ =0}. Define 3, r=3rir[37);
then I =dim(35/3 . r)<o0. Weselect uy =1, u5,.... 14 in 3, to be linearly indepen-
dent modulo 3, 5. Clearly there is a unique / x [ matrix representation I": & I(E)
=(c;;(&)) of 3 such that, for each fe3pand 15751,

(4) Su;= IZSICJ'{(‘*:) Ui+ ¢ (Cj,¢€3f,F)'
We define U=U®C', t=1®1, and choose an orthonormal basis {e,,..., &} for -
C'. For me M, £€ 3y, put

d(m)= Y [(m;u;dp)®e;,

1gjst

¥(m: &)= Y lf(m;Cj‘éodF)(@ej.

Pg2js

(5)

We then have the differential equations
(6) ®(m;&)=(1@T (&) Plm)+¥(m:&).

1t is convenient to rewrite these in the following form.
LemMa 2. Let T={Ay, ..., A} F={hs 1 oo Ayy and let {H,,..., H,} be the
basis'® of & dual to {2, ..., A,}. For t={ty, ..., t)e RY, put

a(t)zexp(tll'fl + ‘”+th&)'
Then, for all me M iz, neMyp, 1 £ j =4,

(7) 5‘3? @ (ma(t);n) =(1QT(H)) ®(ma(t);n)+ ¥ (malt)in: Hj).

7

16 Note that H,e 35 for 1 £/=d, and they span az.




88 V. S, VARADARAJAN
For t=(ty,..., 1), let [f|=(3+ -+ )2, min(f)=min(t;, .., t,). Define R
= {t:te R*, min(7}>0}.
LemMMa 3. Let Bp=35y, .. Then for cachneMyp, {€3p we canfind B=B; ,>0
and q=qy , 20 such that for all me M|y, teR%,
(@ (ma(t);n)| < BEp(m) (1 + o (m)) (1 + e},
(9 (malt);n: S BEp(m) (1 -+ (n)irem) (1 — e (m))8(1+ e

For proving these we need to use the following consequence of (4.1.5): there
exist cg >0, o 20 such that

O A S0)ScoZalm) (o) (meMi)

In addition, while deriving the estimates for ¥ we use: (i} the following inequality
which follows from (1)~(3): given (&M, and ze 3, we can find ¢, >0, r, 2 =0 such
that, for all me My,

LS (3Lt (2Yo dp)| S ¢1de (m) Bm) (1 +0 () pp(m) (1= e (m) ™"

and (ii) the inequality yy (ma(f)) < vp(m) exp{ —min ()} for all me M g teRY.

(8)

~min{f}

6.3. On some differential equations of first order. We shall now describe the
technique which enables us to determine the asymptotic behaviour of @ from the
first order differential equations (6.2.7) and the estimates (6.2.8).

Let W be a Hilbert space of dimension n< o I'y, ..., I';, mutually commuting
endomorphisms of W. For 1= jsdand ueC, W, ”{w we W, {I';— ul) w=0 for
some s =0}, We put

(1) W= N ( % Wj.u)a °T=I4| W,

15i2d \piRep=0
of course, °W is invariant under all the I'; and the °I'; have only pure imaginary
eigenvalues. We now consider functions F and G; (1<j=d), defined and C'ina
neighborhood of CI(R%) with values in W, and having the following properties:
(i) there exist ¢>0, >0, r =0 such that, for allteR%, 15j54,

F@Isc(+y, 1GOISc(l-+ley e ? ™0,

()
(8Ffo1)) (=T ;F(0)+G;1).

LeMMA 1. Let the notation be as above. Then there is a unique we °W such that,
with F()=exp(t,°T'y + -+ 1T w, |F(tt) = Fo,(tt) » 0 as t—+ o0, for each
reR".. Moreover, there are constants C>0, a>>0, depending only on r, B, nand the
I'; such that, for all teRY
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[F{t)—F o ()| £ Ce(L+t]) " 2" exp{ — o min(1)},

©) F. (015 Ce(1+

Any endomorphism T of W can be uniquely written as 7'+ T, where 17,
T"eC[T], T" is semisimple, and the spectrum of T" (resp. ") is real (resp. pure
imaginary); moreover (see [Se, Lemma 607) there is a constant k(n)>0 independent
of T'such that [e™"|| £k(n) (1+{T"[)""*. We may thus replace I'; by I'; and come
down to the case when I';= ¢;I for all j, with e=(cy, ..., ¢)e R*. If some ¢;> 0, we
select ¥y,..., 74>0 with!7 (y, ¢)>0 and find that, for all e R%,

o]

Flty= -} ?,-f exp {— x{r, )} G;(t+ xy} dx.

]

I
0

If e £0 but ¢; <0 for all i, we find that, for all te RY,

1

I?(t)f=exp {(e, )} {F(O)—}—Z t J. exp{—x{c, 1)} G;(xt) dx}.
i 4 !H
Finally, suppose ¢=0. Then F(t,..., t)— a limit w as t— +co, and for all >0,
writing t=(z, ..., 1), F{t)=w—}; [* G{x,..., x) dx. We then have, for all teRt,

with T=rmin(f),
1

F{t)—w=(F(x)—w)+ }_:(tj—'c) J Gi(t+x(t—1) dx.

The required estimates follow from these formulae.

6.4. Proofs of the theorems, We now apply the results of §6.3 to (6.2.7) and
(6.2.8) to deduce the existence of a function @y C™ (M, p:1;) with values in °U, :
having the following properties: |
(1) ®p(mexpH)=e'®T® & (m) for all me My, Heay, |
(i) @p(m; E)=(1QI (&) Pplm) for all me My, € Fp, and
(iii) there are constants o0, B, >0, g, =0 such that

(1 |@r(m)| £ By Ep (m) (140 (m))" (me M),

[ (m exp H) — ¢ 0, ()
2 < B Ep(m) (1 +o(m) (1 —pplm))™
(L4 H] ) exp { —afp (H)} (meMiyp, Heag).
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Actually, the existence of ¢ with these properties on M 17 Is more or less imme-
diate; the extension of @, to My so that (i), (i) and (1) of (iii) above are valid for all
meM p is made possible by the following result (cf. [6h, Lemma 547): Given
Heaf, there exists c(H)>0 such that m expti e M} for all meM,, and t2c(f)
-0 (m).

Write @p=3, ;o &5 ;®¢; and define fy=®, ,. Then e (Mg, tp), and it
is clear from (2) that (6.1.1) is valid. If ze 3, I' (up(2))=0, and so yz(z) f=0. For
any ae A™ let us write loga=H, + H, where H, ea, and A(Hy)=0for all Ae Z\F. If
we take m=exp(H, +3H,), H=4H, in (2), and observe that for suitable constants
¢>0,r'20,dp 'Ep<c'E(1+0) on A* (cf. (4.1.5)), we obtain the following esti-
mate: There exist B, >0, g, 20, y>0 such that for all ae Cl{(4™") with f,(loga)>1,

(3) /(@)= (dz f) (D) < By (1 +0 () exp{—¢ (loga)—ypy(loga)}.

From this we get (6.1.3) and hence (6.1.4), without difficulty.

Now we can find x, >0 such that CH{A* )< Uy A" (F:x,). So, if fp=0 for all
F, (6.1.3) implies that |f|=0(Z"*7o), thus proving the implication (ii)=(iii) of
Theorem 6.1.2. Suppose now that f e [2{(G)@U. Let J be as in (4.1.6), and Jp, the
corresponding function for M . Clearly, given any y> 0, we can find ¢(y)>0 such
that for all ae 4™ with Br(loga)z y, dp(a)* Tz (@) c(y) J(a). So, writing Ay (Fix)=
{a:ae A*, fp(loga) = max(y, kg (loga))}, we find from {6.1.3) that

(4) J Jp(a) | fr(a))* da< .

A* L (Fix)

- Ifweremember that J(aa’) = J(a') for all '€ A and that o'+ f;, (ma’) is a tempered
U p-finite function on Ay, we can deduce from (4) that f. =0.

We now consider Theorem 3. We extend a to a §-stable CSA I, and assume that
2f=x4(2)f, Vz€3, Ael¥ being regular and real-valued on (— 1)/ (Inl)+ (Inp).
We need the following lemma.

LEMMA 1. Given FG X, there exists a unigue °fresf (Mp: ) such that fr(ma)
=°fp(m) for all me My, ac Ay, moreover, fr=0 unless sA | ap=0 for some se Wy,

To prove the lemma, one first uses the differential equation 1e(2) fe=x4(2) f¢
(ze 3) and the regularity of A (cf. also Lemma 6.5.6) to conclude the following:
There exist unique functions f; ;on My such that fy(ma)== Yisi<nexp{a ;{loga)}
S, s(m)(me Mg, ae Ap), Ay, ..., Ay being all the distinct ones among the restric-
tions sA | ay (se Wy ). As the A, are real, the tempered nature of ai— v (ma) implies
that fr ;=0 unless 4;=0. The assertions of the lemma follow from this,

Suppose now that the conditions of Theorem 3 are satisfied but f¢%(G)® U.
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We select Fc 2 of the smallest cardinality such that fp#0. Then (°f¢)p- =0 for all
F'c F, by (6.1.4). So °fxe€{Mp) ® U, implying that k(M) =rk(Ky) (§5.7). This
means that, for some #-stable CSA b, hnp =a,. But h is not conjugate to b and so
(g, b)) has a real root o. This implies that H;eay for some root f§ of (g, I). But then,
by Lemma I, {s4, 8> =0 for some se W, contradicting the regularity of A.

6.5. Estimates uniform over the discrete spectram. We have not made full use
of the techniques of §§6.2 and 6.3 in proving the main theorems of this section.
It turns out that one can obtain estimates describing the asymptotic behaviour of
an eigenfunction that are actually uniform over the spectrum as well as over the
set of parameters of the representations of K according to which the eigenfunction
transforms when subjected to translations from K. Obviously, such estimates will
play an important role in harmonic analysis on G ([5e], [5f], [14a]). In this sec-
tion we shall illustrate what is involved by discussing the case when the eigen-
functions come from the discrete spectrum.

Let G be as in §3. [ is a §-stable CSA containing a;.%'(l) the set of integral
regular elements in [*. Given Ae.#'(l) and 1, U as before, we define

n A (G A)={[:fesd(G:1),zf =X,(2) /. Vze 3}.
Then o (G:1: A) <% (G)® U. We define Q as in § 1, select a norm || | in I, and put
) [eh= (14 Iz (@) (1 + (), o, Al=[el (14 [ Al).

For any measurable function ¢:G-U, [¢|, is the I?-norm of the function
x— | (x)| whenever this is finite. Our main result in this section is then the fol-
lowing:

THeOREM 1. We can find a constant o> 0, and, corresponding to any a, be®,
constants C=C, ,>0,r=r, ,=0 such that, for all AeZL'(l), all v, and all
fed(G:t:A),

(3) ' ad) (M =Cle, AN fI,EX) T (xeG).

We remark that it is enough to prove this theorem for a=5b=1; the general
case can then be deduced through an elementary device. Further, there exists
x>0 such that

Clid"ys U 47 (2\{i}:x).
Ae¥
It is therefore sufficient to establish the following:

LEMMA 2. Fix AeX and let F=X\{A}. Then there exist >0, C>0, ¢ 20 such
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that for all A, v, kx>0, as above, fe s (G:1: A1),
@) If(@ ECl, A E@ |1, (acA*(F:x)).

For the rest of this section we fix /' as above, and Heaf; note that dim(ay)=1,
First we have the following a priori estimates:

LemMa 3. Let u, ve®. Then there exist C=C, ,>0 and s==s, ,20 such that,
Jor all A, t as above and fe o (G:t: A),

(5) (fo) NS Cle, AFEISY,  (xe6).

Given a, be®, we first prove the existence of a constant C, =Cy , ,>0 such
that lafbll, = Cylt, A} || fll, for all 1, A, fas above, where d=deg(a)+ deg(b) (see
[14b, Lemma 5.5]); (5) now follows from Theorem 4.1.3,

We next introduce ¢ and its differential equations. We select v, =1, v,, ...,
v;€ 3p such that 3, is the direct sum of p, [3] v; (1<i<!). Define U=U® C' and
select an orthonormal basis {e;} for C'. If ve 3y, v0;=3 1 cic) fp(2p;) 0 (1 SJSD)
for unique z,, €3 and we write I'(A:v) for the /x/ matrix whose ijth element is
Hop(Zy: i) (A). T'(A: -) is a representation of 3 in C". Given fe s (G:1: A) we wrile

(6) O(m)= ) [flm;v)®e; (meM ).

15jst

Proceeding as in §6.2, but taking into account the variability of 7, we get the fol-
lowing result [14b, Lemmas 5.2 and 5.4]:

LemMa 4. Let ve 35 Then for each © we can find a differential operator D,
acting on C*® (M3 : 0) such that
(i) for all t, A as above and fest (G:t: A),

(7} P(mv)=(1 @ (A1) P(m;v)+P(m; DY) (meMiy);

(i} there exist r20, w,eM,; (1 Sk Zky) such that, for all © as above and all

~

geC™ (M U),

(8) g (m; D) = yp(m) (1~ yp(m))™" %‘rl"1 >, PAGHEN

HA
tA

We now have the differential equations

i .
(9) ;;} D(m exptH)y=(1Q I'(H)) ®(m exptH)+ P (m exptH; D)

valid for all me M{;, 120, Furthermofe, as our eigenfunctions f are in €(G)® U,




CHARACTERS AND DISCRETE SERIES FOR LIE GROUPS 93

(10) lim @(m exptH)=0.

{—-+oo
We are therefore in a position to proceed as in §6.4. However, Lemma 6.3.1
cannot be used as it is, because the estimates given by it are not uniform over
I,,...,I';. We therefore use the following variant:

LEMMA 5. Let W be as in §6.3, and I' a semisimple endomorphism of W
whose spectrum S=S(I') is real. Let E, (ce S) be the spectral projections and define

(11) v(M)=max|E[j, o{)= min [c|

ces ce S\{0}
Let F, H be functions of class C* on [0, c0) with values in W such that () dFjdt =T F+H
on [0, o), (ii) there exist C>0, r=0, f>0 such that |[F()|SC(1+1), |H(f) <
C(1+14) e for all 120, and (iii) the limit lim,, . o, F{2) exists and is 0. Then,
with [ S denoting the number of elements of S and A(r, B)>0 a constant depending
on r and B but not on I' or C,*® we have

(12) [F@QISA, B) Cv(r) [SE)] (141 exp{—min(8, o) 1} (:20).

On the other hand, the spectral structure of the matrices I'(4:v) is known
in great detail and one has the following lemma ([Se, §3], [5f, Lemma 19],
[14b, Lemmas 5.1 and 7.2]): '

LEMMA 6. For each ve3y, Ae L (1), ['(A:v) is semisimple and its eigenvalues
are o, .n(V) (84} (s€ W) In particular, the eigenvalues X of I'(A:H) are real,
and there exists o> such that |A| =« for all nonzero A and all A %' (1). Moreover,
we can choose a basis e(A) for C' (11, Ae L' (1)) such that () all the I'(A:0)
are diagonal in this basis, and (ii) if E;(A) are the projections C'—C-¢;(A), then
there exist Cy>0, ro =0 such that, for all Ae L' (1),

(13) 1 ZS! FE(A) S Co(1+1A11).
£js

Lemma 2 and thence Theorem 1 follow from these estimates more or less
in the same way as in §6.4. For details see [14b].

The perturbation method is central in the entire theory of asymptotic behaviour
of eigenfunctions, and the results obtained through its application go far beyond
what we have indicated above. As further examples we mention the theorems
that suitably formed “wave packets” (of eigenfunctions) over the spectrum belong
to #(G) and even €*(G) (cf. [6i], [14a]), as well as the results on the theory of
integrable eigenfunctions (cf. [14b]).

'8 We can take A{r, f}=max (2, [§ (1+u¥e ™™ du).
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7. The discrete series

We shall now describe briefly how the results of the preceding chapters lead
to the determination of the discrete series. Exploiting the fact that the K-finite
matrix coeflicients of representations of the discrete series are cusp forms, one
uses Theorem 5.7.1 to reduce their harmonic analysis to that on the compact
CSG; the procedure is of course similar to that used by Weyl for determining
the characters of compact groups.

7.1. The discrete series and the discrete part of the Plancherel formula. For
simplicity we restrict ourselves to the case when G is a connected real form of
a complex simply connected semisimple group G,. We choose once and for all a
Haar measure ¢x and fix it throughout this section. We write &, {G) for the discrete
series of G. For weé,(G), d(w)>0 is its formal degree so that, for any mew and
unit vectors ¢, y in the space of =,

) [ 10 0,002 ax=ate.

L?,(G) is the closed linear span of the matrix coefficients of ¢o; it coincides with the
closed linear span of all subspaces of L?(G) that are irreducibly invariant under
the right regular representation r and define a subrepresentation in w. °L*(G)is the
(orthogonal) direct sum of the L% (G). °E and E,, are the orthogonal projections of
L*(G) on °L*{G) and L% (G) respectively. w* is the class contragredient to w.

THEOREM 1. G has a discrete series if and only if tk(G)=rk(K), i.e., G has
a compact CSG. : ‘

Assume now that rk(G)=rk(K) and use the notation of §3. In particular,
let P be a positive system of roots of (g,b); =53, .pot, d=¢_;[[aerl&e—1),
w={|,epr H,, ¢(A)=signw(i) (Ac £’), g=4dim(G/K).

THEOREM 2. For each i€ %', there exists w[Aled,(G) such that @ ;=
(—=1)e(1) @, and every we&,(G) is of the form w(A] for some e L', w[A]=
w[A,] if and only if A, and A, are in the same Wz-orbit. Moreover, there exists
a constant ¢(G)>Q such that d(w[A))=c(G) [W] [@(})] for all Ac &', Finally,
w[-A]=w[A]* |

Harish-Chandra has determined the value of ¢(G) explicitly when the Haar
measure dx is normalized in a canonical way {(cf. [61, pp. 537 and 5407).
For Ae £ and f e €(G), let

(2) [ix) =(=1Pc(G) W] w(-2) O_,(r(x)f)  (x€G).
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THEOREM 3. For any f€¥%(G) and ke L', f1=E ;[ and lies in €{G). More-
over, the series

(3) 2, N

Ae¥'{Wn

converges absolutely'® in €(G), and its sum °f is precisely °Ef. Finally, G (G)=
€(G)n°L?(G), and f—°f is a continuous map of €(G) onto °€(G).

7.2, Theorems 1 and 2. Standard arguments from representation theory
[6h, Lemma 77] show that &,(G)#9 if and only if there are nonzero K-finite
eigenfunctions for 3 in L*(G). Theorem 1 is then immediate from Theorems 5.7.3,
6.1.2 and 6.1.3.

We now come to Theorem 2 (for complete details, see [6h, §§40, 417). Let
1k (G)=rk(K). For any geC®(B) let §:k—| g¢, db (Ac.¥) be its Fourier trans-
form ({y db=1). Define

(1} ‘ Ff(b)=A(b)‘[ S{xbx"Ydx  (beB, fe¥(G)).

Then Theorems 5.5.1 and 5.7.1 imply easily that, for all cusp forms f and all
tempered invariant eigendistributions @,

(2) O()=(=1)" W3]~ 1j PF;db (m=%dim(G/B)),

@ being the analytic function on B that extends 4(@ | B'); in particular, for all
rcl,

3 O, (f)=(—1y"F,(4).

If we now take Fourier transforms in the relation (5.6.2) and remember that
F e C*(B), we obtain the following result: there is a constant ¢{G)>0 (c(G) is the
constant ¢ of (5.6.2)) such that

@ SO0 L o) 6,66} /) (xeG, /"6 (G).
It is clear from (4) that the harmonic analysis of the cusp forms is completely
controlted by the distributions @,.

We shall now indicate how the transition from (4} to Theorem 2 is carried out.

Fix a homomorphism y of 3 into C and let &, , be the set of all weé,(G) with
Xo=x If we&, , and g is a matrix coefficient of w, then @,(r(x) g)=0 unless

*® This means that for any continuous seminorm v on F(G), Yo v(f)<eo.
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X=¥-u So, taking f =g in (4) we find that &, , =9 unless y =y, for some e &'
For such a y, we obtain from Corollary 5.5.3 and the results of §3 the following:
Let 5;=1,5,...,5 be a complete system of representatives for W\W; ; iet @,
(resp. @,,) be the analytic function on B extending 4(@, | B') (resp. 4(0,, | BY));
then, there is a unique c,,eC(wed, ,, 1 £i=r) such that

(5) l - @w: Z Crui@s,-it: (pw___ Z CmiqjsM'
Tgigr 1Zigr
We now use the orthogonality relations satisfied by the matrix coefficients of
the discrete series to obtain the following relations, valid for all we&,(G):

Fr=d(w)"f(1) @, (/eB(GInLi(G)),
O,(f)=d(@)"'f (1) bpr  (fe€(GINLE(G)).

It follows from these relations that the functions [W,]~ Y2 &, (wed, ) are
orthonormal in L?(B). Moreover, they have the same span as the &,, (1 Si<r).
For, if this were not so, we could find a nonzero linear combination @ of the
@, such that @(f}=0 for all K-finite eigenfunctions f for 3 in €(G); taking
to be an arbitrary Fourier component of @ we find that @=0. It follows
at this stage that &, , has r elements and that the matrix (c,,)) (wed,, ,. 1 Si<r)
is unitary. ) :

One now argues that the ¢, are integers. To see this, let weé, , and let |
n(d)=[w:d], Y, =character of d (e (K)). Then ¥, s (D) ¥, is a well-defined
distribution on K, and one can show that it coincides on KNG’ with the distribu-
tion defined thereon by the function @,,. It follows without difficulty from this
that all the ¢, € Z. This completes the proof of Theorem 2 except for the formula
for the formal degree and the sign factors in @,,,;.

For determining the signs we argue as follows: We have @,,={(1) @,
where { is a Wy-skew function on 2’ with values +1. Fix 1e.%’ and use (4)
with x=1 and f=¢*§ where g#0 is a K-finite matrix coefficient of w[2]*. Then
S€°6(G)n L2, (G), and |

lg 12 =(~ 1) ¢(G) w(4) L(2) Ouyny{g#d).

(6)

This determines {(A) and d(w[A]), and yields the discrete part of the Plancherel
formula:

) 1717=¢(@) [Wa] 2. 10(@lOu(/+])  (fe°6(G).

7.3. Outline of the proof of Theorem 3. For any Ae #' and fe%(G), the rela-
tion fy=FE,,;f follows from a ‘“‘real variables” argument. Also, fe%(G) is a
differentiable vector for both the left and right regular representations, as can
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be easily deduced from the estimates of §4.1. So °Ef and E_f are differentiable
likewise. Consequently they are C* functions all of whose derivatives lie in
LAG).

Write & for the set of all Aie¥’ such that {4, &> >0 for all compact roots
ae P.2° For each 1e ¥ we select a Hilbert space H,, a m,cw[A] acting in 9,,
and an orthonormal basis {¢; ;:ieN,} for $; such that each e, ; belongs to a
subspace irreducibly invariant under ,[K]. Let

i, i (X) =A@ 2N (%) en,  €2,0) (xeG).
Clearly, the a; ; ; form an orthonormal basis of °L*(G), and, for all fe¥%(G),

(1) CEf= Z i fi= Z fA,i,j: f).,i,jm(f’ aﬁ.,i,j)a).,i.j-

AT i,jeN,

LletQbeasin§1 and 6.5, z=w -+ (5-6)4— 1 where w is the Casimir of G. Then
zay,;, =(1+ A% ap 5, p Qa;,, 2 =, Ch, 5., 3 moreover, the ¢, ; are constants
=1 and have the property that, for some g =0,

@ | c=sup J ¢ri<oo.
Ae¥t ieNs

We now use the uniform estimates of §6.5 to establish the following: there exist
o>0, C>0, p=0 such that for all le #*, i, je N,, xeG,

(3) _ @z, s, AN S Cleg, ics ;(1+IAY P E(x)t .

From (2) and (3) it is easy to deduce the following: There exist C>0 and m=0
such that, for all f¢%(G),

(4) 2 2 1ETCTS e sClQm2m 2

Ae ¥t [,jeN,

The estimate (4), together with those obtained by replacing f with ufv (1, ve ®),

- led to Theorem 3 (cf. [6i], [14b]).

The above discussion also shows that the topology of °¢(G) is precisely the
one induced by the seminorms [+ |Jufv, (4, ve®). It is even possible to restrict
ourselves only to the seminorms fi|EfE|, (r, 520, ¢=1—(X+ - +X7)
where the X; are an orthonormal basis of g); this however needs some more work
which we do not go into here.

I wish to acknowledge my very great indebtedness to the many long con-
versations with Professor Harish-Chandra on problems of harmonic analysis
on semisimple Lie groups. In addition 1 have profited a great deal from my
discussions with friends and colleagues here as well as at other institutions,
and I am grateful to ail of them.

20" o+ i a system of representatives for £/ W
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