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1. Introduction

A linear semisimple Lie group G admits nontrivial unitarizable highest weight
modules precisely when it admits holomorphic discrete series. Supposing G is
such a group, it is of interest to characterise the unitarizable ones among the set
of all highest weight modules of G. We are looking for a condition which is both
necessary and sufficient for a highest weight mecdule 7 of G to be unitarizable. The
most desirable (and one that would be the simplest) is to give a condition directly
on the highest weight u of the module z. The main results of this paper (theorem A,
§ 3 and theorem B, § 5) give such an explicit necessary and sufficient condition on
i, provided the infinitesimal character of 7 is nonsingular. In § 6, we discuss the
applications of our results to the (o, p) Betti numbers of compact quotients of
bounded domains.

Let G be a connected linear semisimple Lie group and let G, be the complex1-
fication of G. Assume that G, is simply connected. Let g, be the Lie algebra of
G and let g be the Lie algebra of G,. Let K be a maximal compact subgroup of G.
Let k, be the Lie algebra of K and k the complexification of k,. Let g, = k, + p,
be the Cartan decomposition and let g = k + p be its complexification. We will
denote by @ the corresponding Cartan involution.

We now assume that the symmetric space G/, is a hermitian symmetric domain.
Asis well-known p can be canonically identified with the space of (complex) tangent
vectors at the identity coset eK in G/x. Let p, be the subspace of p consisting of
the holomorphic tangent vectors at eK and p_ the space of antiholomorphic tangent
vectors at eX. It is well known that both p, and p_are K submodulesof p. Let b
be a Cartan subgroup of k and r, a Borel subalgebra of k containing 5. Then one
knows that b is a Cartan subalgebra of g and that r, + p, is a Borel subalgebra of g.
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Let r be this Borel subalgebra of g. Let A be the set of roots of g with respect to b
and let A; and A, be the sets of compact and non-compact roots respectively, so that

k=b+2aeAkga alld
P =2aeAnga

here g® denotes the one dimensional space spanned by a root vector corresponding
to a. Let P be the set of positive roots defined by the Borel subalgebra r. Thus

(1-1) r=b+2ael>ga-

P, and P, will denote respectively the set of compact and non-compact roots in 2.
We denote by 8, 3, and J, half the sum of the roots in P, P, and P, respectively.
Let U(g) bethe enveloping algebra of g and U (k) be the enveloping algebra of k.

Let = be an irreducible smooth representation of G in a space H. Let H be the

space of K finite vectors in H so that U (g) has an irreducible representation z in
H for which H is U (k) finite.

(1.2) Definition : = is said to be a highest weight module for g (or for G) if there
exists g€ b* and ve H, v # 0 such that

(1) For every Teb, n(T)v = u(T)v,
@ n(X,)v=0ifac P orac — P,.

When there is some confusion, we will specify 7 is a highest weight medule with
respect to P, U — P,.

(1.3) Definition : = is said to be unitarizable if there exists a positive definite
inner product (,) on H, such that for evéry X in g,,

@X)v,w)+ v,z (X)w)=0 for all »,w in H.

Problem : Describe the set of all highest weight modules for G which are
unitarizable.
We will focus our attention on the set of all highest weight modules for G which
have a nonsingular infinitesimal character (see § 3 for definition). :
If z is a highest weight module for G, then upto equivalence 7 is uniquely deter-
mined by its highest weight  (Definition (1-2)) and u is uniquely determined by .
Also u satisfies
(1.4 2(u,0)/(a, @) e Z for every ae P

and 2 (u, a)/(a, a) € Z+ for every ae P,.

Moreover, to every u satisfying (1.4) there corresponds (upto equivalence) a
unique highest weight module 7, of G whose highest weight is x. This module
is obtained as follows : Let V), be the finite dimensional irreducible module for KX
with highest weight 4. Regard Vy as a module for k + p_ by making the action of
p- trivial. Then the highest weight module mu is simply the unique irreducible
quotient of U(g) Qu (x+5) V-

We denote by Hy this irreducible quotient. One can show that the action T
on Hy comes as the action on K finite vectors of a suitable irreducible representa-
tion of G. : :
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We note that P, U — P, is the set of positive roots with respect to another lexico-
graphic ordering on A. We denote by P this system of positive roots. Recall

the g Verma modules V,,5,, with highest weight 4 (an element of b) relative to P.
Let Z(g) denote the centre of the enveloping algebra U(g). As is well-known ele-
ments of Z(g) act by scalar multiplication on Vi,5,9- Let x5, denote the
corresponding homorphism of Z (g) into C. If w denotes the Casimir element in
Z (g), then it is known that

18, (@) = (n + 35, 1 + 85) — (35, 35)
where J; denotes half the sum of the roots in P. Thus
(1.5 Xpn(@) =(1— 8, + s, 7 — 8, + 3)) — (3,9)
as (3,8) =(5,%)

(1.6) Corollary : The Casimir acts on the highest weight mo.ule H), by the scalar
(ﬂ—‘5"+5k, M= 8,. +6h) _'(6:6)

Proof : Itisnot hard to see that Hy is precisely the irreducible quotient of Voon-
Hence the result (q.e.d.).

2. An inequality satisfied for unitarizable representations

Let n = my be an irreducible highest weight module for G. Let H =H\, be the space
of K finite vectors. We assume henceforth that n is unitarizable. For the results
to be stated in this section, 7 can be an arbitrary irreducible unitary representation
of G. Let L, L+ and L~ be the spin module and the two half spin modules for so ()
the Lie algebra of the special orthogonal group SO (») (The symmetric bilinear
formon p C g is the restriction of the Killing form). By composing with the adjoint
action of k on p, we obtain the spin representation ¢ of k on L and the two half-
spin representations o= of k on L+ and L-. Recall that for every xep there is a
clifford multiplication ¢ (x) : L > L. Now, H® L is a k module and we have a
formal Dirac operator D : H® L > H® L defined by

@2.1) D=Xn(X)® c(X).

Here the summation is over an orthonormal basis for p,. There is a unique (upio
a positive scalar multiple) positive definite inner product (,) on L such that for every
Xin p, and s, s in L,

@2 (€058 + (e s)=0.

Since we have a positive definite inner product on H, for which also

23 @E@®o)+ @ (x)v)=0

for every xin g, and for u, v in H, we now have a positive definite inner product
on H @ L, the product of the ones on H and L. For u,vin H and s, s’ in L,
then

wu®s,v®s) =) (s,s).

With respect to this inner product we clearly have
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2.9 (Dw,w') = (w, Dw)

for w, win H@L.:

Let w, be the Casimir element in U (k). It equals — X'Y? where Y, is a basis
of k, such that (Y,, ¥;) =48, where (,) denotes the Killing form of g,.

A formula was obtained in [3, § 3] for the square of the Dirac operator. These
computations also apply to the square of the formal Dirac operator (of also
[7, §8]). One thus obtains '

(2.5) Lemma : D®* =(n®a) () — 7 (0) @1 — (8, 8) + (5s, 5y)-

(2.6) Proposition: Assume that ¢ is the highest weight of an irreducible k sub-
module of H® L.

Then
(§+6k: f +5k)>(”—6n+5h, ﬂ‘_6"+5.).

Proof : Let w be an element of H ® L contained in an irreducible £ submodule
of H® L with highest weight £. The Casimir w, of k£ acts on w by the scalar
(€ + 0., £+8)—(8,8) Thus by (2.5) and (1.6)
DPw=((+3, §E+)—(0:,0) —(B—3,+ 8, u—3,+38)
+(3,0) — (3,8) + (3, 00)

=(§+ 01 €+ 0) — (1 — 8, + 34, 4 — 3, + 3y).
Hence 7 .
@7 @*w, w)={(+ % £+ 8)—(t—23,+38)) (w,w).
But  (D*w,w) = (DDw, w) = (Dw, Dw).
The last quantity is non-negative since the hermitian form on H® L is positive

definite. For the same reason (w, w) is also nonnegative. Hence from (2.7) the
assertion in the proposition follows. :

(2.8) Corollary : Let mu be an irreducible highest weight module for G. Assume
7 is unitarizable. Let ¥, be the irreducible finite dimensional module of k with
highest weight u. Suppose £ is the hlghest weight of an irreducible k¥ submodule
of V. ® L. Then,

(§+6hé +5k)>(ﬂ _6n+5k3 K —6n+5k)'
Proof : This is clear from (2.6) since Vu & Hy.

3. A condition on u

Let (ms, Hy). be a highest weight module for G. In §1, we observed that the
centre Z(g) of U(g) acts on the Verma module V, ;,, by the homomorphism
Xi,n : Z(g) > C. Any homomorphism y of Z(g) into C is of the form yx;,, for
a suitable element » in b*. The homomorphism y is said to be nonsingular if
n -+ 8; is nonsingular, ie. (7 + 8;,0) # 0 for any root a.
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We will now assume that the infinitesimal character of 7, is nonsingular. Since
the infinitesimal character of 7, is given by the homomorphism yz,«, our assumption
amounts to making the hypothesis 4 — 8, + J; is nonsingular, i.e.

GB.1) (¢ — 8, + 6 a)# 0 for any root a.

In addition, recall that the highest weights u of highest weight modules for G
satisfy the condition

2(u, a)/(a, @) e Z for every a in P and
2 (4, a)/(a, 0) e Z+ for every a in P,.
Let P’ be the set of roots defined by
3.2) P =laeA|@—38 +da>0}

Note that P’ is the set of positive roots with respect to a lexicographic ordering.
Also, observe that

(3.3) 2(u—3,+ 8, a)(a,0) is a positive integer for every a in P’
Let 8 = half the sum of the roots in P’. Then, note that

B4 u—208,+oh=41+7".

Where A satisfies

3.5) 2(40)(a,0)isa non-negative integer for every a in P’.

For every a in P,, (4,6)=>0, (— ,,6) =0 and (5;, a) > 0. ,
Hence

(3.6) P 2P,

Let P. be the set of non-compact roots in P’ and let &’ and let 5, be half the sum
of the roots in P,.

Then & =34, + 8, and so (3.4) implies
B.7 u=2r48,+96,

Using our assumption that =, is unitarizable, we wish to conclude that the quanti-
ties A and P’, appearing above have very special properties. We now introduce
some more terminology to explain this.

(3.8) Recall that r was the Borel subalgebra of g corresponding to the positive
system P. Let q be a parabolic subalgebra of g containing r. Let

g=m-tu

be the Levi decomposition of g such that m contains b. Thus u is the unipotent
radical of ¢ and m is a reductive component of g. Let P, be the roots of (m, b)
which are contained in P. Let P, be the roots of P whose corresponding root-
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spaces are contained in ». Thus P is the disjoint union of P, and P, If P-
denotes the set (— P,) U P, then it is known that P- is also a positive system. Set
P, to be the set of non-compact roots in P-. '

(3.9) From the assumption that n, is unitarizable, we wish to conclude the follow-
ing property about the expression y =4+ §, + 0,. There exists a parabolic-
subalgebra 'q containing r such that with the notation introduced above P, =pP,
and (A, @) =0 for every a in P,

(3.10) Example : Observe that if (u — 5, + 6,, ) > 0 for every a in P, then
P = P’ and the above property is easily seen to hold by taking g == r the Borel
subalgebra itself. (P, = empty in this case and P; = P,). This is precisely the
case when 7, is a member of the holomorphic discrete series. As another illus-
tration, we mention the case # = 0, 5o that 7, is the trivial one dimensional represen-
tation, which is unitarizable. In this case, the property is seen to hold by taking
g =g and A =0 (P,, = P in this case and P, = — P,).

(3.11) We will quickly see that (2, a) = 0 for every a in P  — P’. Corollary (2-8)
says that if £ is the highest weight of an irreducible k submodule of Vi ® L, then
(§+0 £€4+8)>=(n—3,+ 8, p—8,+38) Thespin module L is self dual
and one has knowledge about the highest weights of irreducible k& submodules of L
(cf. [3, §2D. Using these one can see that the irreducible k¥ module with lowest
weight — 8, occurs in L. Let us denote by ¥_,, this component contained in L.
Then Vi ® Vg, © Vu @ L. If we now take £=u—5,, then since u=2i+96,+8,
(cf. @.7), 0 — 6, S=4+3, Both 1and 5, are dominant and integral with
respect to P,. Thus there is an irreducible finite dimensional k module Vs,
with highest weight 4 — &;. By [6, 2:26] ¥, _5, occurs in Vu@® V_s,. Applying
corollary (2.8) to §{ =p — &8, = 1 + 8, we conclude that
A+0,+00 A+, +8) = (U—08,+ b4, o — 8, + 8)
Since p =A 40y +0p, st —8, + 0 =4+ 0, + 8 =21+ 8 (cf. (3.4).
Thus : '
A+0,+0, A+3,+8)> G+, 2+5) W
ie. A+8,A+8)>@A+8,4+8) '
ie. 4D +24,8+0,0=204 20 +24,8) + @, )
But (8, 8) = (8", 8'). So we conclude that
(4, 8)= (4, %) '

That is (4,8 — 8)<0.
But A is dominant with respect to P’. Hence we conclude that (4, @) = 0 for every
ain PN —P. .

We wanted to show that there exists a parabolic subalgebra q containing r such
that PJ = P> and (4, a) =0 for every a in P,. For any g if we define

P,,, =the set of noen-compact roots in P,



Unitarizability of some highest weight modules 7
then
Ppyw=Pyn —Pg.
Also, the assertion that P, = P; is the same as the assertion
(3.12) Pp,o» =P,N — P;.

We will now commence a long chain of arguments and eventually show that u is
of the very special type discussed in (3.9).

Suppose Y is a subset of P, —P,. We denote by qy the intersection of all para-
bolic subalgebras g of g containing r such that P, contains Y.

(3.13) Remark. For each Y S P,n — P, g, has the following property. No
semisimple ideal of the reductive part of g, is contained in k.

The reason is the following. As is well-known the parabolic subalgebras g of g
containing r are in one to one correspondence with subsets of the set S of simple
roots of P. Suppose g contains r and suppose Y € P,,, where P,, is the set of roots
of P which belong to the reductive part m of g. Suppose m has a semisimple ideal
m, such that m; € k. This is equivalent to the statement “ Let X € S be the subset
of S corresponding to g. Then X can be written as a disjoint vnion X; U X, such
that all the roots of X; are compact and X; is orthogonal to X,, i.e. (a, §) =0 for
any a in X; and any fin X,.” But then if g, is the parabolic subalgebra of g con-
taining r corresponding to X, € S, then g, is a proper subalgebra of g and the set
of non-compact roots in the reductive part of g, is exactly the same as those in the
reductive part of g. In particular, Y is still contained in the set of roots of the
reductive part of g, since Y contains only non-compact roots. Since g, is the inter-
section of all parabolic subalgebras g of g containing » for which ¥ € P,,, it is now
clear that the reductive part of g, has no semisimple ideal contained in k. This
completes the proof of (3.13).

Varying Y over the subsets of P, N — P, we get a collection of parabolic sub-
algebras

{gy| YE P, n — PL).

Tt should be remarked that the set P,, , of those non-compact roots of P which are
contained in the reductive part of any g = g, may not be contained in P, N — P,.

(3.14) Consider the collection of those parabolic subgroups ¢ =gy, YE P,n — P,.
for which P, , is contained in P, N — P,. (This set is non-empty since gy, when
Y is the empty set is obviously a member). Among all such gy, choose one for which
P,,. has maximum possible cardinality.

In what follows, unless otherwise stated, g will denote this particular parabolic
subalgebra and the sets P, ,, P, Py, etc. (cf. (3.8)) shall all be with respect to
this particular parabolic subalgebra g. We now set

3.15) P =P, u Py
(3.16) We claim that P! is a positive system in A.

The simplest way to prove this is through the following argument. Under the
well-known one to one correspondence between parabolic subalgebras of g contain-
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ing r and subsets of S, there is a unique subset X of S corresponding to our para-
bolic subalgebra g chosen. (The subset X is precisely the set of simple roots of
P,). Suppose for a while g is not only semisimple but actually simple. (This
assumption is not really necessary but is made here only to illustrate the argument.
The proof in the general case is alike). Then one knows that S contains only one
simple non-compact root, say a;. Also it is known that the coefficient of a, in the
highest root in P is one. This is characteristic of the hermition symmetric case,
where P, U P, and also P, U — P, are both positive systems. If a; belongs to X
(which, as was observed before, is the set of simple roots for P, = P, , U P,..)
then a, is the only non-compact root in X and its coefficient in the highest root of
P,isone. Thus P, , U (— P, ,) is a positive system for the set of roots of m with
respect to b. If a; does not belong to X then P, , is empty and so again
P,z U (— P,,,) is a positive system for the roots of m. If P, is any positive
system for the roots of m, then P,,u P, (where P, is the set of all roots in P, whose
root-spaces are contained in the vnipotent radical of ¢) is a positive system for the
roots of b in g. But one sees easily that the set P! in (3.15) is nothing but

(3.17) P*=(P,,. U — P, ,) U P, (disjoint).

Thus, the assertion (3.16) is proved. As we remarked, the case when g is not
simple can be treated in the same way.

(3.18) We now let S* be the set of simple roots of Pl Let r! be the Borel
subalgebra of g corresponding to P1. Since P! = P, y P; (the latter defined with
respect to ¢) one sees at once that r! is contained in q.

(3.19) Let X' be the subset of S corresponding to g.

(3.20) We enumerate S as ay, Gy, ***, 0, - -, 0; in such a way that X* = q,, a,,

- a,.
Remark : Even when g is simple S* may contain more than one non-compact
root.

We ndw show that P’ = P, This will be used in the proof of 3.9,
(3.21) Suppose P’ is not equal to P2,

We wish to show that (3.21) leads to a contradiction, namely (3.34).

If P'is not equal to P’, then there is a simple root a in S, such that — a belongs
to P'. '

However P! and P’ have some common parts. Let us look at this very care-
fully. First of all both P' and P’ contain Py(cf. (3-15) and (3-6)). Secondly,
observe that by the choice of g made in (3-14), P, N P, € P, , , where P, . denotes
the set of non-compact roots, whose root spaces are contained in the unipotent
radical of g. But P,,, € P! (cf. (3-17)). So, P, n P; € P}, where P} denotes
the set of non-compact roots in P!, This means that all those roots which are
common to — P, and — P, are also common to — P, and — P%. In particular,
a root common to — P, and P} cannot be in — P, N — P;; it has to lic in
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P, N — P,. The root a picked out in the beginning of this paragraph is not
common to P! and P’. Thus, in view of the preceding observations, we can infer
two facts about this root a. First, it cannot be a compact root; thus it has to liein
Pin — P So, secondly it cannot bein — P, N — P, buthastobein P, N — P,.
Without loss, we can assume that S* has been enumerated in (3.20), in such a
way that @ = 0,4,.

Thus,
(B322) In thé enumeration (3.20), a4, is a noncompact root and a,,e P, N — P;.

For any positive integer e such that 1< e<Cj, let ¢° denote the parabolic sub-
algebra of g corresponding to the subset {a;, ay, -, 0} of St. Thus g*=¢q(cf. (3-20))
and g**! denotes the parabolic subalgebra of g corresponding to the subset {a;, a,,
+++, a4} of S1. Note that since g*** contains ¢* =g, afortiori.

(3.23) g+ contains the Borel subalgebra r.

(3.24) We also claim that q*+* is of the form q described before (3 .13) for a suitable
subset YE P, n — P;.

In fact let Y° be the set P, , of the non-compact roots in P which belong to the
reductive part of our chosen ¢. Then Y° €& P, N — P; and g = gy». If we now
let ¥ = Yo U {a,} then inview of (3.22) Y€ P, N — P and it is easy to see that
g*+! equals the corresponding g,. Let P4 denote the set of roots of the reductive
part of g**' which belong to P. Let Pt} denote the set of non-compact roots in
P+, The reductive part of g1 contains the reductive part of q* = q and is strictly
bigger than the reductive part of ¢ ; g, is 2 nonc-ompact root which belongs to
the reductive part of ¢*+* but it does not belong to the reductive part of ¢*. Thus,
in fact, the set of non-compact roots in the reductive part of g*is a proper subset
of the set of non-compact roots in the reductive part of g**. But g was chosen to
be maximal having a certain property stated in (3.14). Thus we conclude

(3.25) Pt is not contained in P, N — P,.
But, evidently, by very definition, P} € P,. Thus we conclude that
(3.26) there is a root B of Pit. which belongs to P, N P,

The root f will be the ‘trump’ in our ‘reductio ad absurdum.’ Since P, N P,S P,
(cf. arguments preceding (3.22)) B is a root in P!, hence a non-negative integral
linear combination of the simple roots S* of P!. In particular,

(3.27) B = A+ da;,, where A is a non-negative integral linear combination
of the roots ay, * -+, a; and 4 is a positive integer.

Note that many of the roots in {g;, ..., a;} may be compact. To proceed with the
argument, we would like to show that A can actually be written as a nonnegative
real linear combination of the set of non-compact roots of a positive system for N,
the roots of the reductive part m of g. To this end we will prove a slightly more
general result. T
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(3.28) Lemma. Suppose g, is any real semisimple Lic algebra. Let g, = k, - Do
be a Cartan decomposition of 8- Assume that' g, has no semisimple ideals con-
tained in k,. Let b, be a Cartan subalgebra of &, and assume b, is also a Cartan
subalgebra of g,. Let g, k, b, etc. be the complexifications. Let A be the set of
roots of (g, b). Let ¢ be any real linear form on i bo. Then there exists a positive
system P in A such that ¢ is a non-negative real linear combination of elements of
P,, the set of non-compact roots in P.

Proof. Start with any positive system Po in A. Let S° be the set of simple roots
of Po. Let So =4, U AU - U A4, be a partition of S° such that

A, = all the non-compact roots in S°,

4,1 = all those compact roots in S°, which are connected (i.e. having a non-
zero scalar product) with some element of A,,

4,» = all those compact roots in S° — {4,V 4,
which are connected to A4,
A3 = all those compact roots in S° — 4,0 4,0 4,,

which are connected to 4,_,, etc.

Because of the assumption that &, has no compact factors the ahove pro-
cedure certainly exhausts all of S°.

Let 1,09, 0, ... be an enumeration of elements of A, B, Boy B3, ... an
enumeration of elements of A,, etc. :

Let ¢ = Xy myy be the unique expression for ¢ in terms of the basis elements
{r7e5°}; my are real numbers, some negative and some non-negative. Without
10ss of generality we can assume that m;,, the coefficient of ¢, in ¢ is non-negative.
Let g* be the parabolic subalgebra of g corresponding to the subset S° — {a1} of
S¢.  Let g1 be the reductive part of ¢* and #!, the unipotent radical of q*. Observe
that there is at least one non-compact root of P° occurring in ! ; for, otherwise,
P S g' (# g) which can only happen if g, has compact semisimple ideals, contrary
to what was assumed. Let ¢ be a noncompact root of P occurring in #!. In
particular, £ can be written as a non-negative integral linear combination of ele-
ments of S°, such that the coefficient of a1 is positive. We now choose a non-
negative real number ¢ such that if

(3 '29) ¢ - Cf =z"7e6" RyP,
then  n, =0.

(3.30) The complex Lie algebra g! is the complexification of the real Lie algebra
& =g'N g and g} has no compact semisimple factors,

Let us postpone the proof of this but assume it for a while.

By (3.29), ¢ — ¢ £ is a real linear combination of roots of g!. Also, the semi-
simple rank of g is strictly less than the semisimple rank of g. Thus, using a suit-
able induction hypothesis, we can assume that ¢ — cf is a non-negative real linear
combination of the non-compact roots of some positive system P of the roots of
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g* with respect to b. This can be done because by (3-30), g! (of which g! is the
complexification) satisfies the hypothesis of the lemma.

Allwe have to do now to prove the lemma is to enlarge P* to a positive system
of the roots of g with respect to b, by adjoining the roots which occur in the uni-
potent radical of g*. For then (3.29) achieves our aim.

It now remains to show (3.30) is true.

Suppose g, is a compact form of a complex semisimple Lie algebra g and suppose
q is a parabolic subalgebra of g. Then the intersection of g with g, is a compact
real form of a reductive part of g. This is well known. In our case g, = k, + iP,
is a compact real form of g. Let k} and p} be the intersection of g! with k, and
po respectively. We observe that ¢! and g? are both stable under the Cartan involu-
tion # associated to the Cartan decomposition g, = k, + p,. (The reason is this:
since we assumed rank of g, = rank of k,, @ is the inner automorphism of an ele-
ment of exp b, ; but b, €S m! € ¢%). Inview of this remark it is not hard to see
that the intersection of g' with g, is k} 4 P} and the intersection of g! with
8 (= ko + ip,) is k§ + ipi. Thus g' N g, is a real form of g* since g N g, is so.

Now the real reductive Lie algebra g! = k} + p} has a Cartan subalgebra b,
contained in k} and we can talk of compact and non-compact roots. The set
§° —{a;} is the set of simple roots for an appropriate positive system for the roots
of g! with respect to b. If g has a semisimple ideal contained in k%, then S° — {ar}
can be written as a disjoint union X; U X, such that all the roots of X, are compact
and X, is orthogonal to X,. But this cannot be done as is seen by the way the g,
was chosen.

This completes the proof of lemma (3.28).

Applying the result of (3.28) to the quantity 4 on the right hand side of the
equality (3.27), we see that there is a positive system Q for the roots of m (the
reductive part of the parabolic subalgebra ¢ chosen in (3.14)) such that

4= Z'Y‘Qn"?’y

where y runs through the set Q, of non-compact roots in Q and m. are DON-negative
real numbers. Thus from (3.27) we obtain

(3.31) B =dags + Zuea,™".

Where d, m, are all non-negative real numbers.

By the choice of g (cf. (3-14)), for every non-compact root a in the reductive part
of g, either @ or — ¢ lies in P, N — P,. Thus,

(3.32) If Qu = {71, 72, - ., ¥4} then either y, or — p, lies in P, N — P

We now enlarge Q 10 a positive system Q* for the roots of g, by adjoining to Q the
set P, of roots in the unipotent radical of g. It should be remarked that O* may not
contain P,. Let 8; (resp. ;) be half the sum of the compact roots (resp. non-
compact roots) in Q*. There is a unique element w of the Weyl greup of k such

(3.33) 5, =w13l.
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Then w-! 8: is the highest weight of an irreducible component of the spin module
L for k. Since L is selfdual, w-! (— 8}) is the lowest weight of an irreducible
component of the spin module L. Clearly — 8} is in the orbit under the Wey]
group of k of this lowest weight. We denote this irreducible component by V_s;.

The contradiction we are aiming at (from 3.21) is the following :

(3.34) There is an irreducible component ¥ with highest weight £ contained in
Vadnd, ® V32 E Vasdnrd, @ L for which (£ 4 &, &4 5,) is strictly less than
(A+ 8, A+ &) (compare with Corollary (2.8) and (3.4)).

The proof of (3-34) is also a little lengthy. We proceed as follows.

Let V4 and ¥V, be two irreducible finite dimensional modules for k with highest
weights (with respect to P,) ¢ and 7 respectively. Let s, and s, be two elements of
the Weyl group W, of k. For any root alet s, denote the element of W, which
corresponds to the reflection associated to a. Suppose there is an element ae P,
such that

Sa = S¢81

and N (s) = N(s,) + 1, where N (s) denotes the length of s, i.e., the length of 2
minimal expression for s as the product of reflections associated to ssmple roots
in P,. For any se W,, let V4,,, denote the unique irreducible finite dimensional
representation whose highest weight lies in the orbit of ¢ + s7. Let w, be the
Casimir element in the enveloping algebra of k. Let C, denote the constant by
which @, acts on Vgi,,. We claim

(3.35) C,<C.,.

Also, let ¢ be the unique element of the Weyl Group W, such that 7 (P,) = — P,.
Then we also claim .

(3.36) C, < C, for any se W,.

To show (3.35), it is enough to show that ¢ - sp7 is a weight of the irreducible.
module V., The latter fact will follow from the following computation. On
the one hand,

3.3 s+ mr)=5sad+se7
2(¢, 9

=¢+Sg‘t'—'m-)* a.

On the other hand, s, (¢+5si 7) =¢+sit — 2 [(¢, a)/(a, )] a — 2 [(s17, a)/a, a)] a.
Therefore, using (3.37)

¢+s,1-=¢+s11-——2(‘:g——’a—?a
Since 7 is dominant with respect to P, and since N (s, $:) > N (1), 2517, a)/(a, @)
is a nonnegative integer. Both ¢ 4 s;7 and s, (¢ -+ 5,7) are weights of V...
From what we said above and from (3.37) it follows that ¢ 4 5,7 is in between
Sq(¢ + 517) and ¢ + 5,7 in the a-string of weights of V.. through ¢ + 5,7,
But the a-string of weights through a given weight of an irreducible module ig



Unitarizability of some highest weight modules 13

unbroken. Therefore ¢ + s, is a weight of ¥4, Thus, the claim (3.35)
is proved. .
Applying (3 .35) successively (3 36) follows.
We will now apply (3.35) and (3.36) to ¢ = A + 8, < &, and 7 = the unique
element in the orbit of — 8} which is the highest weight of ¥_52. In particular
we can conclude the following.

(3.38) Let se W, be such that 571 (— &7) is the highest weight of V_p:. Let
te W, be such that tP, = — P,. Let C, (resp. C) be the value of Casimir ; on
Vatdursi-o0s the representation of k& whose highest weight belongs to the orbit of
A+ 8, + 8, — & (resp. value of w, on Vaisus, et (-8 )-

Then

(3.39) C.<C,

The crucial observation in conchiding the proof of (3.34), is the following lemma:

(3.40) Lemma. Letsbe defined as in (3.38) and let C, be the value of the Casimir
@, o8 Vysgs,-sth Then C, + (8 &) is strictly less than (u — 3, + &, — 5,
+ 03).

(Recall g =4 43, + 3)

Proof : The root § chosen in (3.26) will play the key role in the proof. To under-
stand the argument, we frst consider the case A =0 and we investigate the value
C, of the Casimir wy On ¥5,18,-s,-

Let By, Ba .- -» Byp .- s B, be the roots in P, and let — By, — B, ..., — B
Bis1s - s B, be the roots in P,.
Recall the positive system @ for the roots of m, the reductive part of g, and the
positive system g% for the roots of g, which was obtained by adjoining to Q the
set P, of roots in the unipotent radical of g. The set 0, of noncompact roots in
Q is described in (3.32). Also it is clear that every root in the unipotent radical
of g belongs 10 P, since the Borel subalgebra of g defined by P is contained in 4.
From these descriptions, it is clear that the set Q;, the set of non-compact roots in
Q2 is contained in {:}: BB o B B -, ﬁr}* The root .., ((cf. 3.22))
is contained in P, 1 — P. That is

Qi € {ﬁhﬁsa vy ﬁ:}-

Also, by our choice (¢f. 3.20, 3.22) a1 is nof a root in the set of non-compact
roots in the reductive part m of ¢. Thus we can and do arrange the enumeration
(B, B s B -+ "+ Be} Of Py, 50 that in addition 1o the properties already men-
tioned, we also have,

(3-41) Qn = {_ ﬁl! “'ﬁa- ey T ﬁu ﬁs+l; v ﬁ!}
where f<j

(3 42) Q; = Qn U {BH'I! ey ﬁr’ ﬁl+1! v -sﬁr} and ﬁj = 4 (Cf. (3 .22))
In addition we observe that the root § chesen in (3.26) beilongs to P, N P =

{B4r, - - -» Bs}. We can assume without loss that § is enumerated io be S,
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. Applying these notation and using (3.31) and (3.41) we obtain-

(3.43) Pou=—api— ... —aB,+ apif + afy + af;

where 4, are non-negative real numbers.
With these preparations, we can now get back to analysing the value of the
Casimir w, on Vsura7-a* the irreducible representation whose highest weight

lies in the orbit of 3, + &, —82. Note that

O =3B+ B+ ...+ 8)
5:.:%(‘51" oo =B Bt . 4 8)
3. =‘].f("‘ﬁl ‘“ﬁa‘f"ﬁcﬂ +,Br)-
Hence 8, 1+ 5, — &, is given by
B.4M) 0.4+ —0i=3B+ ... +B8—Por— ... -~ B
T —_ﬁi'!_ﬁjﬂ. +ﬁ,).

Several observations must be made from the expression on the right hand side of
the equality in (3.44). First of all it shows that 8y - &, — 8, is a weight of the
spin module L for k (cf.[3, §2]. Moreover,

(345 thi+.. PP~ =B —.. . — B+ B ...+ ) is not in
the orbits under W, of the highest weights of irreducible components of I,

As we will see below, (3.45) will essentially follow from (3.43). A weight ¢ of
the spin module L is in the orbit of the highest weight of some irreducible compo-
nent of L if and only if

(3.46) d=%(m+...+7)

where {71, ..., y,} is the set of noncompact roots in some positive system for the
roots of g. It follows easily from (3.43) that whenever Bro s By — Bosts « -,
— By, — B, is contained in a set {y,, 7,, ..., 7.} as described above then — B

also belongs to {», ..., 7). In particular, {8, ..., 8, — Bor, ..., — By s
= By, By, - - ., By} cannot be the set of non-compact roots of a positive system for
the roots of g. This is enough to conclude that B B =B ...
— B ... =B+ B+ ... -+ B} is not in the W, orbit of the highest weight of
any irreducible component of L. One might wonder why can’t $(8, + ... + 8,
— B =B — B B ...+ B) equal Y(n+ .. 4 9) where .., s
15 2 set as described after (3.46). But if it were so, that would make the multi-
plicity of (71 + ... -+ 7)) as a weight of L equal to at least two (cf. [3, §2D
which by [3, § 2] again cannot happen.

Thus (3.45) is proved and hence by (3.44) 5, +- 8, — 8% isa weight of the spin
module L for k, but V.5 ,* is not an irreducible component of L.

We state now a general fact. Suppose ¢ is a weight of an irreducible finite dimen-
sional module ¥, with highest weight . Assume that ¢ is not in the orbit of .
Let ¥ be the irreducible module whose highest weight lies in the orbit of ¢, Then
the value of the Casimir @, on V is strictly less than the value of o, on V,. To see
this let s¢ be the highest weight of ¥, where s is an element of W.. Then
5¢ + Z.mge = 1 Where X m,q is a nonnegative integral linear combination of the
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roots in Py, with at least one m, different from zero. Thus (r 4+ 3, = + 8,) =
(5¢ + 84, 5O + 0) + 2 (s¢p + O, T M) + (X Mya, £ mya) which is strictly greater
than (s¢ + ;, s¢ + §,). Our assertion follows from this.

On every irreducible component of L, w, acts by (5,8) — (5, 9,). Thus we
conclude that,

(3.47) w, acts on Vs,+5,-5% by a constant strictly less than (6,8) — (6;, 6y
This completes the proof of lemma (3.40) in the case A =0. In the general case
we argue as follows.

Consider the irreducible finite dimensional module Vyi3,+5,-5 discussed pre-
ceeding (3.39).

A+5n+5:.—6;=1+%(ﬂl+ ---+Ba"_’ﬁo+1--- —ﬂ!"

— B+ Bt ... +8)

Let F, be the finite dimensional irreducible module for g whose highest weight lies
in the orbit (under the Weyl group of g) of . Consider the k module F, ® L.

Let Pbe a positive system for the roots of g. Let 7 be the highest weight of Fy,

with respect to P and let 3, be half the sum of the non-compact roots in P. Let
V343, be the irreducible module for k£ whose highest weight lies in the orbit

(under W,) of 1 -+ 3,. For each P, V543, occurs in F\, @ L. On each one of the
modules V'§,3,, the Casimir o, acts by the same constant, namely, (1 +38, 1+ 3)

— (3., 3. For any other irreducible component V; of F\ @ L, the action of w,
on ¥ is strictly less than the above constant. No element in the orbit of 4 +
B+ -+ B —Ber - —B— ... —Bi+Ppa+ ... + ) canbe of the

form Z + 5, as described above, for the same reasons as we saw for the case
A=0. Since A+3,+8,—9;, is equal t0 A+3Bi+ ... + By — Bosrr - ..
—B ... — B+ Bisa + ... + B) we conclude that w, acts on V+onidl-s DY a

constant strictly less than (): +- 5, i + 5) — (84, 0,). The latter constant is simply
A+ 8, A+ 8) — (8,, 8;) since 4 is the highest weight of F, with respect to P’
Thus the lemma (3 .40) is completely proved.

Looking at (3.39) and the lines preceeding it and using lemma (3.40) we now
conclude the following :

Let V¢ be the irreducible component of Vyys+p, @ V5!, whose highest
weight £ lies in the orbit of the sum of A 4 8, -+ &, and ts~* (— §}) which are
respectively the highest weight of V5,45, and the lowest weight of V.5t
(cf. [6]). Then the Casimir w, acts on ¥ by a constant which is strictly less than
A+, A+08)— (8, 0,). In other words (£ + &, & + J;) is strictly less than
@A+9d, 1+90).

This completes the proof of (3.34).

In view of corollary (2.8) the statement (3.34) clearly implies a contradiction.
Thus, the assumption (3.21), namely, that P’ is not equal to P! (c.f. (3.15) for the
definition of P?) leads to (3.34) which in turn leads to a contradiction. Thus, we
have proved P’ = P'. Ia particular, P, = P}, which by (3.15) is equal to P,
the latter being defined with respect to g (cf. (3.8)).
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We have thus obtained a very explicit necessary condition on the parameter y
of an irreducible highest weight module z, of G, in order for 7, to be unitarizable.
We have obtained this under the assumption that 7, has a nonsingular infinitesimal
character. We gather below the basic notation introduced in the course of our
proof.

We denote by r the Borel subalgebra of g defined by the positive system P. For
a parabolic subalgebra g of g containing r, we denote by m the unique reductive
part of g containing the Cartan subalgebra b and call it the reductive part of ¢.
Let P,, be the set of roots in P which are roots of the reductive part of g.

Theorem A. Let m, be an irreducible highest weight module for G which has
highest weight p (with respect to P, U — P,). Suppose that the infinitesimal
character of 7, is nonsingular. Now assume that 7, is unitarizable. Then there
exists a parabolic subalgebra g of g containing r such that

p=A- 20,
where (i) 3,,, is half the sum of the non-compact roots in the unipotent radical of g,
(ii) 2 (4, 6)/(q,q is @ non-negative integer for all a in P and (iii) (4, @) =0 for every
root a in the reductive part of ¢.

Proof : Let P’ be the positive system on which y — 8, + 8, is positive. Then
(3.48) pu=4+0,+0

where  is an integral linear form, dominant with respect to P’ and where §;, is half
the sum of the non-compact roots in P’ (cf. (3.7)). Let P, be the set of non-compact
roots in P'. For each YE P, n — P;, let gy bethe intersection of all parabolic
subalgebras g of g containing r, such that Y is contained in the set of roots in the
reductive part of g. For certain subsets Y, the set P, 0 Py is contained in the set
of roots in the unipotent radical of g,. Choose a maximal one with this property

and call this parabolic subalgebra g.

(3.49) For this g, we claim P, N P, is precisely the set of noncompact roots in
the unipotent radical of g.

If this were not the case, we obtained a contradiction to the property (2.8) of
unitarizable representations. Namely, we obtained (3.34). Thus, the assertion
(3.49) is proved. It is therefore clear that 8, - 8, = 25, Hence by (3.48)
4 =4+ 28, Itremains to show the property, (ii) and (iii) for A.

In (3.11), we proved that (4, @) = 0 for every ain P, N — P,. Because of (3.49)
P, N — P is precisely the set of noncompact roots in P,. We also know that the
reductive part of ¢ has no semisimple ideals contained in k (cf. (3. 13)). Thus every
compact root of m is a linear combination of noncompact roots in P, Thus (4, @)
=0 for every root o in P,,. This proves (iii) Note that

P=P,U (P, NPYUP, N —P).

Since A is dominant with respect to P’ and since P, as wellas P, N P fare contained
in P, (4 @)=0if acP,U(PanNPy). If ae P, N — Py, then we already saw
(cf. (3.11)) that (4, a =0). Thus (ii) is proved. This completes the proof of
theorem A. :
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In the next two sections, we will see that the converse of Theorem A is also true.

4. The sufficiency of the condition

The purpose of this section and the next one is to prove the following theorem,
which is converse to theorem A.

Theorem B. Let q be a parabolic subalgebra of g containing r. Let &,,, be half
the sum of the non-compact roots in the unipotent radical of ¢q. Let A be a linear
form such that 2 (4, @)/(q,q) iS 2 nonnegative integer for every a in P and such
that (4, @) =0 for every root a in the reductive part of ¢q. Let u =21+ 204, n-
Then the highest weight module (z,, H,) is unitarizable.

(4.1) Remark. =, asin Theorem B, willhave a nonsingular infinitesimal character.
The first part in the proof of Theorem B is the following.

(4.2) Proposition. Let (nu, Hy) be as in Theorem B. Let L be the spin module
for k. Let £ be the highest weight of an irreducible k£ submodule of H @ L. Then
(E+8, £€+8)> (1 — 0y 8 1 — 8, +8,). Moreover, if Vis an irreducible
k submodule of H, with highest weight ¢+ pand if ¥V is an irreducible &
submodule of ¥V, @ L with highest weight ¢, then we actually have strict
inequality (€ 4- 05, € +0) > (1 — 8, + 8, 4 — 0u+ 8y).

Proof : Our idea in proving (4.2) is to use the construction [5, § 4] where cne
builds a chain of U(g) modules above g- Verma modules and takes a quotient of
the biggest object of the chain to obtain modules like H,. We explain this a little
more now.

For the discussion below, the condition that the positive system P is adapted
to the complex structure on G/K is not needed. In fact G/K need not even admit
any invariant complex structure and P could be arbitrary.

For the parabolic subalgebra g of g, let P, be the set of roots in the unipotent
radical of ¢ and let P,, be the set of elements in P which are roots of the reductive
part of g. Thus P =P, U P, (disjoint). Also it is known that (— P,) U P, is
also a positive system for the roots of g. Let a be the unique element of the Weyl
group of g such that ¢P =(— P,) U P,. For a while, let n be any regular inte-
gral linear form dominant with respect to (— P,) U P,. Set W), =V, 5 _y_5.
Let X equal the set of all simple roots of P which are elements of P,,. (Thus, X
is simply the set of all simple roots of P,). Foreachae X, 2(—»n — 8, 0)/(4,a)
is a non-negative integer. Hence for each ae X, the Verma module V,,p,_, » 5
is a proper submodule of V5 _, 5. In fact, if we set W, equal to the sum
ZoexVo,p,—san—s> then W, is a proper submodule of W, =V, 5, 5. Inthe cons-
truction of [5] one builds a (finite) canonical chain of U (g) modules .containing
W;. The maximal object of this chain has a unique irreducible quotient. Let
us here call it D,. In [5] it is shown that D, is a k-finite U (g) module. From
the work of [1] and [5] the module D,, among other properties, has the following
properties relating it to ¥, p, _y-3.

Let P, (resp P,,;) be the compact roots in P,, (resp P,). Then P,=P,, , U P, .
One knows that (— P,,;) U P,, is also a positive system for the roots of k.
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Let = (resp. t) be the unique element of the Weyl group W, of k (regarded as a
subgroup of the Weyl group of g) such that 7Py = (— Py ) U P, (tesp. tP, =
— P), For se W,, set s'p =5(¢ + 8;) — 6. In [5] it is shown that

4.3) (t 7Y (— n — J) is the highest weight of a k submodule of D,, with mulu-
plicity one.

 (4.4) If ¢ is the highest weight of any k submodule of D,, then ¢ is of the form
¢ =(tr) (—n —3J —A), where 4 is a nonnegative integral linear combination
of elements of P and in addition —»n—3d—A4 is a P, extreme weight (cf. [1 §2])
of Wi/W,.

For (4.3), see [5, § 5] and for (4.4) see [5, Prop. 4.4].

(4.5) Now suppose that (—n — 8,a) =0 for every a in X.

Let u~ be the span of the root spaces not contained in g. Then

4.6) g=u PmPu

where m (resp. u) is the reductive part of g (resp. the unipotent radical of ¢). If
C_,-5 is the one-dimensional weight space of W/y, with weight —»n — §, then
the condition that (— % — J, @) =0 for every a in X ensures that u . C_,_5=0
and mC_,_3 S C_, 5 Let U(u), U(m) and U (4) denote respectively the enve-
loping algebras of u~, m and u. Then U(m) - U(w): C_,_5 = C_,_5. Thus (4.6)
implies U () - C_y_5 = Wi/w,. In particular, any weight of W,/y, is of the form
—n—3—A, where A is a non-negative integral linear combination of elements
of P,, the roots which occur in the unipotent radical of g.
Applying these remarks to (4.4) we obtain the following.

(4.7) Suppose (—n — J,0) =0 for every a in X. If ¢ is the highest weight
of any k submodule of D,, then ¢ is of the form (tr)’ (— 5 — 3 — A) where 4 is
a nonnegative integral linear combination of elements in P,.

Now let V4 be an irreducible k submodule of D, with highest weight ¢ and let
¢ =7 (—n—8—4)asin (4.7). Let V; be an irreducible k submodule of
Vs ® L with highest weight £.

We wish to conclude that

4.89) (E+0 E+8)= ()

Let i be the lowest weight of an irreducible component of L. It is enough to prove
the inequality (4.8) when £ is in the W, orbit of ¢ 4 y. We know y is of the form

15,, where 5, is half the sum of the non-compact positive roots of some positive

system P for g such that P, € ,13'./' Also, since ¢ is dominant with respect to P, and
lies in the orbit of y - t5,, it can be shown that for any w e W

€+ 80 E+ )= W@+ 18) + 8, w(+ 13,) + 5y).
Thus to prove (4.8) it suffices to show that for some we W,

4.9) @+ 15+ 8y w(d+ B+ 6)> ().
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Now ’
$=(r) (~n—~3—A)=tr(=n—3—A+8)=5
=tr(—n—06— A)+ t (0; + 5).
We will show (4.9) for the element w = 171.
g =t(—q — 8 — A) 4 1(5, + 15y).

trt (@ + 13,) =t(— 7 — 8 — A) + t (B + 70) + t70,.
So,
@.10) t71(d + 18,) + 8y =1(— 1 — & — A) + 115, 4 17D, o Tam

In view of (4.10) to show (4.9) it is enough to show

4.11) (—n—8—A+ 18, +18,, —n—08— A+ 18, + 18,) = (1, 7).

Recall that &, was half the sum of the non-compact roots of a positive system P
such that P, € B, Let Am be the set of all roots of m. Then Pn A, gives
a positive system Pn for A, and clearly P S P,. Let P* =the positive
system for the roots of g obtained by adjoining to P, the set P,. Set 5! =half
the sum of the non-compact roots in P*. Clearly, ‘ '
4.12) 5, = 5; — B, where B is a sum of elements from P,,,, the non-compact
roots in P, ' :
Also note that

(4.13) B, < P* and P, € P~
Every element of the Weyl group of m leaves P, stable. In particular 7P, € P,.

In view of these remarks, the two positive systems P and 7P* both contain P, and
differ only in the roots of m. In particular if s is the unique element of the Weyl

group of g such that sP = 7P*, then s is actually an element of the Weyl group
of m. Hence

(4.14) sP, = P,and s can be written as a product of reflections s, where the roots
a are in X.

Note also that s6 = 78, 4+ 15;. We write it as

@.15) 86 =238+ (— &+ 70 + 783

and think of it as the result obtained by applying the formula S.a ) =
A —2(4, 0)/(q,a) & successively to the reflections s, in the expression for s asin
- (4.14). Since (— 7, a) = (3, a) for every a in X, it follows from (4.15) that

(8.16) (=) = — 1 — S rB 7
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With these preparations we can now show (4.11). Using {4.12) and (4.16), we
see that

@17 —n—-8—A+t 15, + b, =5(—n)—A— B

where A and B are both nonnegative integral linear combinations of ele-
ments from P,. We assumed that » was regular and dominant with respect to
{(— Pn) U P,, Since sP, = P,, we see that s(— ) is dominant with respect 10
(sPn) U (— P,). Thus, from (4.17) we see that

(—9—8—A+ 8,413, —n—8—A+15,+15)= (1)

and equality occurs only if 4 =0 and B =0.

Thus, we have shown (4.8) ; in fact we also proved that for equality to hold
in (4.8), it is necessary that ¢ = (¢#7)' (— n — 8), ie., ¥, should be the unique
‘ minimal’ k-type of D, _

We now apply these general facts to our special case to prove proposition (4.2).
First of all observe that for y as in theorem B, the statements in proposition 4.2
for (mu, Hy) will follow if we prove the corresponding statememts for (my, Hj)
the dual of (w4, Hp). We will prove the statements for (z;, H}) by identifying H}
with & ‘D,’, described above. In fact, choose » =1 — 8, + 3,.

Then, we ¢laim

4.18) D, ~ Hj.

We will first verify

4.19) (Y (—n=0)=-—uw
(D (—n—8) =t~ —3+3)— b
=t{r(—n—8+8)+ &)
=t (r(— 5 — 8w — 8y + 3) + 84)
=t(r{— A —28)+ 8 + 5))
=f(— A28, + 0, + &)

since 7P, = P, and 7 is a product of reflections s,, a e X, and (A,a4) =0 for a e X,
But — 238, 4 0, + 0 = — 20,

So, t(—A—~28,+ 18+ &)=1t(—A—28,,) = —tu and this proves (4.19).
Now, let ¢ be the highest weight of an irreducible & submodule of D,. By
(4.4) ¢ is of the form ¢ = (t7)' (— n — & — 4) where 4 is nonnegative integral
linear combination of elements of P. Here, in addition — v — § — 4 should be
a P, cxtreme weight for W,. If 7, denotes the k—Verma module ¥, . y3
contained in W, =V, p 45 then the action of the enveloping algebra gives
a k& module surjection U{p) &V, - W,. Hence any P, extreme vector of W,
has to be of the form — n — § — A where A4 is a nonnegative integral linear combi-
nation of élements of P,. Since elements of W, léave P, stable, we now conclude
that ¢ is of the form (#7)’ (— 9 — 8) — B where B is a nonnegative integral linear
combination of elements of P,. This shows that D} is a highest weight médule
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(with respect 10 P, U — P, as in Def. (1.1)) with highest weight —¢ ((t7)' (— 7 — 3)).
Since (t7) (— 4 — 8) = — tu (by (4.19) the assertion (4.18) follows.

To conclude the inequalities and the statements in proposition (4.2), it remains
to verify (—19 — 38, @) =0 for a in X. But

g =— A By — B, — (Bt 8) = — A — 25,

But by assumption (4, @) =0, for a in X and also it is well known that (24, a)
=0 for a in X.

This completes the proof of proposition (4.2). In the next section, we will use
the result of proposition (4.2) and arrive at the unitarizability of (mu, Hy).

—~

5. Role of the formal Dirac operator

The purpose of this section is to prove a general unitarizability result for highest
weight modules when one knows an inequality as in proposition (4:2).

Let (nu, Hy) be an irreducible highest weight module which admits an invariant
hermitian form.

(5.1) Proposition. Let ¢ be the highest weight of an irreducible k submodule
V¢ of H, and suppose that for every k submodule ¥y contained in ¥ ® L, one has
(E+08,, E+8)=(—8,+ 0, u—38,+8,), with strict inequality whenever
¢ # u. Then (my, Hy) is vnitarizable.

The techniques of proving (5.1) are essentially the same as already employed
in the proof of {4, Prop. 9.7)]. For the benefit of the reader, we will discuss below
the main ingredients of that argument.

We define a filtration H, in H = H, as follows. H, is the irreducible k module
Vu. We inductively define H,,, = H,<p.H,. Since H is a highest weight
module, H = U;H,. Now, let us normalize the hermitian forms on H, so that it
restricts to a positive definite one on H,. Inductively, assume that it restricts to a
positive definite one on H;. We wish to prove it restricts to a positive definite one
on H,,,.

The main tool we employ is the formal Dirac operator D : HQL > HQ®L,
(cf. (2.1)). Clearly D(H,@L) S H,;;.: ® L. Let L5 be the one dimensional k
stbmodule of L whose highest is — §,.

(5.2) Lemma. D(Hn®L.,,) SH, L.
With suitable normalizations,
(5.3) D =Z4ep,m (X)) @ C(X_p) + Zger, @ (X_a) @ C(Xo).

Clearly the part X,.p, 7 (Xg) ® C(X_,) annihilates H,,, @ L_;,. Hence to
prove (5.2) it is enough to show that p_. H,,; € H,. This can be done easily.
Thus (5.2) is proved.

Take the standard hermitian form on L. Then we have a product hermitian
formon H@ L. One can show that if v, wely © H@® L, where I; is the iso-
typical k submodule of H @ L with highest weight £, then,

(5 4) (Dva DW) = {(§ + 61:3 f + 51‘) - (:u - 6' + 5b’ " — 69' + 5k)} (”’ W).
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Let H* be the unique k-submodule of H, which is a complement of H,. Because
of the hypothesis of the proposition (5.1) the scalar within brackets in (5.4) is a
positive number whenever v, we (U, H) ® L. It now follows from (5.4) and
(5.2) and the induction hypothesis that the hermitian form on Hf, ® L_,, is
positive definite. Dividing out by the 4+ ve factor coming from L_;,, we see
that on HY, the form is + ve definite. Since H, and H}, are orthogonal, it
now follows that on H,,, the form is --ve definite.

This proves proposition (5.1).

Now, combining together proposition (4.2) and proposition (5. 1), we have proved
theorem B, since the modules in question are known to possess invariant hermi-
tian forms.

6. Applications to (o, p) Betti numbers : Remarks

Let I" be a discrete subgroup of G so that I'\G/ K is a compact locally symmetric
hermitian domain. The (o, p) Betti number of I"\\G/ K is a certain sum over the
class of irreducible unitary highest weight modules (z, H) for G, havingthe same
infinitesimal character as the trivial one-dimensional representation of G (cf. [2]).
If such a module (z, H) has a nonzero contribution to the (o, p) Betti number,
then necessarily,

(6.1) dim (Hom, (A*p., H)) # 0.

In particular, (7, H) has to be a module for the adjoint group of g,. Moreover,
since (z, H) has the same infinitesimal character as the trivial one-dimensional
representation of G, the infinitesimal character of z is regular. Using theorem A
and theorem B, we obtain the following.

(6.2) Proposition. Let q be a parabolic subalgebra of g containing r. Let y =
23,4, the sum of all the non-compact roots in the unipotent radical of q. The
highest weight modules (%, H,) obtained this way for the various g consist precisely
of the set of irreducible unitary highest weight modules for G having the same
infinitesimal character as the trivial one-dimensional module.

(6.3) Let ¢ be as in proposition (6.2) and let u = 2§,,,. When is Hom, (A? p,, H,)
nonzero ? It is nonzero if and only if p is exactly the number of non-compact
roots in the unipotent radical of g¢.

Suppose p is the number of non-compact roots ingand let X, ,. .., X, be the
corresponding root vectors. The vector X,, A ... A X, in A®p, has weight u-
If B is a positive compact root, then for 1 <i < p, either [Xg, X,] =0 or else,
[Xg, X,.] is a scalar multlple of X.,,, 1<j<p,j#i. Hencead(Xp) (X,, A .. A
X,,) =0. Thus X, A ... A X,, is a highest welght vector with highest welght M.
ThlS provesyHom, (A?p., “)aé 0.

Conversely, suppose Hom, (A?p;, Hu)# 0. Then there exists an irreducible
k module ¥, with highest weight ¢ such that ¥, € A”p, and ¥, € H,. Since

A®py S LQ@L* we have Hom, (V4 ®L,L)#0. Hence we can ﬁnd an
rreducible kK module ¥ with highest weight £ such that V; € ¥V, ® L and Vg <L
Since Vg S L, (£ + 8y, &+ 8:) =(5,0) (cf. [3, §2].
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Note that since H, has the same infinitesimal character as the trivial one-
dimensional module, (¢ — 8, + &, u — 8, + 8,) = (6, 9).

Thus (§+06,, £€+6)=(@u—08,+3d, u—38,+38,) As we already have
Ve S Vo ®Land Vo & H,, we conclude from proposition (4.2) that ¥V = V.
Thus, Hom, (A®ps, Vi) # 0. But if s is the number of non-compact roots of g,
then as we already saw Hom, (A°p., V) # 0. Thus, Hom, (A?p,, A*p)#0.
This can happen only if p =s. Thus (6.3) is proved.

Since the multiplicity of ¥4 in A? p, can be at most one, in the course of the
above argument, we have actually proved '

(6.4) The space Hom, (A®p,, H,) in (6.3) has dimension exactly one.

The Betti numbers of I'\G/ K, have been studied through representation theory
by Matsushima, Hotta—Wallach, Borel-Wallach, Zuckerman and Casselman-Schmid.
In particular if r is the real rank of G and if 1< p < r, their results show that the
(o, p) Betti number must be zero. Combining this with our observations in this
section, we should expect that if 1< p < r, there does not exist any parabolic sub-
algebra containing the Borel subalgebra r for which p is the number of non-compact
roots in the unipotent radical of g. In fact, when we set out to verify this, case
by case, we see that this is always the case; occasionally (e.g. SO°(n, 2), SO* (2n)
and the exceptionals) we even get sharper results. We list below the result of doing
this exercise.

(6.5 G =SU(m,n) (m>n). Real rank =n.

Inthe Dynkin diagram there are m -+ n — 1 vertices a5, @y, - - -, Gp.,-1 €RUMerated
in the ‘usual’ way. The unique non-compact root is a,. Let g be the maximal
parabolic subalgebra defined by (a, a3,..., Gnin,—1)- The cardinality of P,
(non-compact roots ,in the unipotent radical of g)is ». There is no parabolic
subalgebra g containing r for which 1 < $ P, .<n.

(6.6) G =SO*(2n)(n>3). Real rank =r =[{n]

The Dynkin diagram has vertices q,. . ., a, with a, and a,-, forminga wedge at
dn—5. The unique non-compact root is a,. Let g be the maximal parabolic sub-
algebra defined by (@, . . ., @s, 6,). Then the cardinality of P, ,is n — 1. There
is no other g -containing r for which, 1< # P, ,<n—1. The (o,p) Betti
numbers in this case vanish for 1<{p <n — 1, even though real rank is [4n].

(6.7 G=S0"2) (n>2). Realrank =2. Let (a5, ay,...) be the vertices
in the Dynkin diagram. Any possible wedge (which only occurs if # is even) is
supposed to be at the right end. The umique non-compact simple root is a;.
Let g be the maximal parabolic subalgebra defined by omitting the last simple root.
Then cardinality of P, , = [(n 4 1)/2], the integral part of [(» 4 1)/2]. There is
no parabolic subalgebra g containing r for which 1 < # P, < [(n 4 1)/2]. Hence,
the (o0, p) Betti numbers vanish for 1 <p < [(» 4 1)/2].

(6.8) G=Sp(n, R). Real rank =n. The vertices in the Dynkin diagram
are (a;, G,. .., d,) and a, is the unique non-compact simple root. Let g be the
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maximal parabolic subalgebra of g defined by (as, ...,a,). Then cardinality of
P, ,is n. There is no other parabolic subalgebra g containing r for which
1 < #py,» < n. Therefore, in this case, we do not get vanishing of (0, p) Betti
numbers sharper than those already known.

(6.9) G = the unique real form of E;, whose symmetric space is hermitian. The
real rank is 2. The dimension of p, is 16. The Dynkin diagram has vertices
(a1, a9, a3, G4, G5, Gg) Where the part (a;, ap, a3, 04, 65) is Of type 4; and a, is con-
nected to a;. The unique non-compact simple root is a;. Let g be the parabolic
subalgebra of g defined by omitting a;. The cardinality of P, , is 8. There is
no other parabolic subalgebra g containing r of g for which 1< # P, , < 8. Thus,
in this case the (o, p) Betti numbers vanish for 1< p < 8 (even though real rank is
2). As g varies the set of numbers # P, , that we get is precisely (0, 8,11, 12,
13, 14,15, 16). Thus, the (o, p) Betti numbers vanish also for p =9 and p = 10.

(6.10) G = the unique real form of E,, whose symmetric space is hermitian. The
real rank is 3. The dimension of p, is27. The set of numbers P, , as g (contain-
ing r) varies is precisely (0,17,21,22,23,24,25,26,27). Thus the (o, p) Betti
numbers vanish for 1 <p < 17 and for p =18, 19, 20.

These cases cover all irreducible hermitian symmetric spaces.

(6.11) Remark. In the case of G = Sp (n, R), the numbers i P, ,as g vaties con-
sist precisely of the set {0} U4+ (m—D4+ ... +@®@—1i)| i=0,1,2,...,
n —1}. Thus if p does not belong to this set the (o, p) Betti number is zero. In
the case of G = SU (m, n), the set of numbers 3 P, , is precisely {mn —m'n’ |
o<m <m, o<n <n, m' and n’ are integers} and so the (0, p) Betti numbers
vanish if p is not in this set. Similar descriptions can be obtained for the other

cases also. @
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Further work on Theorem A and Theorem B :-
Subsequently, the author extended the results
in joint work with Enright (LNM 880) to singular integral infinitesimal infinitesimal
character for classical groups. Later  Enright,
Wallach and Howe (= Heather Willow Chang)
did it for any infinitesimal character for any
hermitian domain. 





