A GENERALIZATION OF THE ENRIGHT-VARADARAJAN MODULES

R. Parthasarathy

For a semisimple Lie group admitting discrete series Enright and Varadarajan have constructed a class of modules. denoted $D_{P,\lambda}$ (cf. [3]). Their infinitesimal description based on the theory of Verma modules parallels that of finite dimensional irreducible modules. The introduction of the modules $D_{P,\lambda}$ in [3] was primarily to give an infinitesimal characterization of discrete series but we feel that [3] may well be a starting point for a fresh approach towards dealing with the problem of classification of irreducible representations of a general semisimple Lie algebra.

In order to give more momentum to such an approach we first construct modules which broadly generalize those in [3]. We briefly describe them now.

Let g_0 be any real semisimple Lie algebra. $g_0 = k_0 + p_0$ a Cartan decomposition and θ the associated Cartan involution. Let g = k + pbe the complexification. Let U(g), U(k) be the enveloping algebras of g, k respectively and let U^k be the centralizer of k in U(g). For each θ stable parabolic subalgebra q of g we associate in this paper a class of irreducible k finite U(g) modules having the following property: Like finite dimensional irreducible modules and like the Enright-Varadarajan modules $D_{P,\lambda}$, any member of this class comes with a special irreducible k-type occurring in it with multiplicity one, with an explicit description of the action of U^k on the corresponding isotypical k-type. We obtain these modules by extending the techniques in [3].

To see in what way these modules are related to the θ invariant parabolic subalgebra q we refer the reader to §2.

When our parabolic subalgebra q is minimal in g and when rank of g = rank of k, the class of U(g) modules which we associate to this q coincides with the class of modules $D_{P,\lambda}$ of [3] (with a slight difference

in parametrization). On the other hand when q = g is the maximal

parabolic subalgebra, the class we obtain is just the class of all finite dimensional irreducible representations of g. If k has trivial center, the trivial one dimensional U(g) module is not equivalent to any of the modules $D_{P,\lambda}$ of [3]. This gap is bridged by the introduction of our class of U(g) modules for every intermediate θ invariant parabolic subalgebra q between q = g and $q = a \theta$ invariant Borel subalgebra of g.

We have to point out that the knowledge of [3] is a necessary prerequisite to read this paper. If an argument or construction needed at some stage of this paper is parallel to that in [3] then instead of repeating them, we simply refer to [3].

§1. θ -stable parabolic subalgebras

As in the introduction, g = k + p is the complexified Cartan decomposition arising from a real one $g_0 = k_0 + p_0$. Let θ be the Cartan involution. Let b be the complexification of a fixed Cartan subalgebra b_0 of k_0 . Then the centralizer of b in g is a θ stable Cartan subalgebra h of g. We can write

$$(1.1) h = b + a$$

where $a = p \cap h$. Let $a_0 = a \cap g_0$ and $h_0 = h \cap g_0$. Let Δ be the set of roots of (g, h). For α in Δ , denote by g^{α} the corresponding rootspace.

(1.2) LEMMA: Let r_k be a Borel subalgebra of k containing b. Let q be a θ stable parabolic subalgebra of g containing h and assume that q contains r_k . Then q contains a θ stable Borel subalgebra r of g such that (i) $h \subseteq r$ and (ii) $r_k \subseteq r$.

PROOF. Let *u* be the unipotent radical of *q*. Define a θ invariant element μ of $h^{\chi}(= \operatorname{Hom}_{C}(h, C))$ by $\mu(H) = \operatorname{trace} (ad(H)|u)$. Let H'_{μ} in *h* be defined by $\lambda(H'_{\mu}) = (\lambda, \mu)$ for every λ in h^{χ} . (Here and in the following the bilinear form is the nondegenerate one induced by the Killing form of *g*). Then

(1.3)
$$\theta(H'_{\mu}) = H'_{\mu} \text{ so } H'_{\mu} \in b.$$

Let

(1.4)
$$\Delta(q) = \{ \alpha \in \Delta | \alpha(H'_{\mu}) \ge 0 \}.$$

[2]

55

Then one can see that

(1.5)
$$q = h + \sum_{\alpha \in \mathfrak{Z}(q)} g^{\alpha}.$$

Let C_k be the open Weyl chamber in ib_0 for (k, b) defined by the Borel subalgebra r_k . Since we assumed that $r_k \subseteq q$, it follows from 1.5 that

(1.6)
$$H'_{\mu} \in \overline{C}_k$$
 = the closure of C_k .

Let α be in Δ . If α is identically zero on b, it would follow that b is not maximal abelian in k. Hence α is not identically zero on b. Let C'_k be the open subset of C_k got by deleting points of C_k where some α belonging to Δ vanishes. Then C'_k is the disjoint union

(1.7)
$$C'_{k} = U_{j=1,...,N} C'_{kj}$$

of its connected components and one has

(1.8)
$$\bar{C}_k = U_{j-1,\ldots,N} \bar{C}'_{k,j}.$$

Choose an index M between 1 and N such that

Now choose an element X_i in $C'_{k,i}$ and consider the weight space decomposition of g with respect to $ad(X_i)$. We now define a Borel subalgebra r^i of g by

(1.10) r^{i} = the sum of the eigenspaces for $ad(X_{i})$ with nonnegative eigenvalues.

If we define

(1.11)
$$P^{i} = \{ \alpha \in \Delta | \alpha(X_{i}) > 0 \}$$

then clearly P^i is a positive system of roots in Δ and $r^i = h + \sum_{\alpha \in P^i} g^{\alpha}$. Since X_i belongs to k clearly both r^i and P^i are θ stable. 1.9 implies that for every α in P^M , $\alpha(H'_{\mu})$ is nonnegative. Hence from 1.4 and 1.5 56

R. Parthasarathy

[4]

Also since X_M belongs to C_k . (1.10) implies that

(1.13)

r_k is contained in r^M .

(q.e.d.)

(1.14) COROLLARY: Let r_k be as in Lemma 1.2. Let r be a θ stable Borel subalgebra of g containing r_k . Then r equals one of the N Borel subalgebras r^i of (1.10).

PROOF: Since r contains b, r contains a Cartan subalgebra of g containing b, h is the unique Cartan subalgebra of g containing b. Hence r contains h. In the proof of Lemma 1.2 take q = r. Then it is seen $r = r^{M}$.

(q.e.d.)

Rather than starting with a Borel subalgebra r_k of k containing b, we want to start with an arbitrary θ invariant parabolic subalgebra of g and recover the set up in Lemma 1.2. For this we prove the following lemma.

(1.15) LEMMA: Let q be an arbitrary θ stable parabolic subalgebra of g. Then q contains a Borel subalgebra of k.

PROOF: Let Ad(g) be the adjoint group of g and Q the parabolic subgroup with Lie algebra q. Let G^{μ} be the compact form of Ad(g)with Lie algebra $k_0 + ip_0$. Note that G^{μ} is θ -stable. It is well known that $G^{\mu} \cap Q$ is a compact form of a reductive Levi factor of Q (cf. [8, §1.2]). But $G^{\mu} \cap Q$ is θ stable since G^{μ} and Q are θ stable. Thus, going to the Lie algebra level, q has a reductive Levi supplement which is θ stable. In this reductive Levi supplement we can surely find some θ stable Cartan subalgebra h' of g. Then, as in the proof of Lemma 1.2, we can find an element H'_{μ} in h' such that $\theta(H'_{\mu}) = H'_{\mu}$ and such that q is the sum of the nonnegative eigenspaces of $ad(H'_{\mu})$. Since H'_{μ} lies in $h' \cap k$, clearly it follows that q contains a Borel subalgebra of k.

(q.e.d.)

(1.16) COROLLARY: Let r by any θ stable Borel subalgebra of g. Then $r \cap k$ is a Borel subalgebra of k.

[5]

A generalization of the Enright-Varadarajan modules

§2. The objects r, r', P, P' and the choice of P'' associated with a θ stable parabolic subalgebra q

Now let q be a θ stable parabolic subalgebra of g. By (1.15) we can find a Borel subalgebra r_k of k contained in q. We fix a Cartan subalgebra b_0 of k_0 contained in r_k . Let a_0 be the centralizer of b_0 in p_0 . Then $h_0 = b_0 + a_0$ is a θ stable Cartan subalgebra of g_0 . Let h = b + a be its complexification. Note that $h \subseteq q$. By (1.2), we can find a θ stable Borel subalgebra r of g such that $r_k \subset r$ and $r \subset q$. One has then $h \subset r$. There is a unique Borel subalgebra r' of g contained in q such that

$r \cap r' = h + u$, where u is the unipotent radical of q.

Since $\theta(r')$ has the same property, we have $\theta(r') = r'$. Let $r'_k = r' \cap k$. Then by (1.16), r'_k is a Borel subalgebra of k. We observe that r'_k is the unique Borel subalgebra of k such that

(2.2)
$$r_k \cap r'_k = b + u_k$$
, where u_k is the unipotent radical of $q_k (= q \cap k)$.

We denote by W_k the Weyl group of (k, b) and by W_k the Weyl group of (g, h). W_k is naturally imbedded in W_g as follows: if s belongs to W_k then s normalizes b, hence also normalizes the centralizer of b in g which is precisely h. Thus s belongs to W_g .

We will now define two distinguished elements of the Weyl group W_k . Let t be the unique element of W_k such that $t(P_k) = -P_k$. Next we denote by τ the unique element of the Weyl group W_k such that $\tau(P_k) = P'_k$. The class of U(g) modules associated to q will be parametrized by some subsets of h^X . We now prepare to describe these. Let Δ_k be the set of roots for (k, b). Whenever possible we will denote elements of Δ_k by φ while elements of Δ (= the roots of (g, h)) will be denoted by α . For a root φ in Δ_k , denote by X_{φ} a nonzero root vector in k of weight φ . For α in Δ , we denote by E_{α} a nonzero root in Δ defined respectively by r and r'. Next let P_k and P'_k be the sets of positive roots in Δ_k defined respectively by r_k and P'_k and e_k and

[6]

Let P'' be a θ stable positive system of roots in Δ such that if r'' is the corresponding θ stable Borel subalgebra of g then

- $(2.3) r'' \supseteq r'_k \text{ and }$
- $(2.4) P'' \supseteq P' \cap -P.$

(2.5) REMARK: If one takes P'' = P' then (2.3) and (2.4) are clearly satisfied. If q is a Borel subalgebra, then P' = P and any P'' which satisfies (2.3) also satisfies (2.4). If q = g, then P' = -P; the only candidate which satisfies (2.3) and (2.4) is P'' = P'.

We can now describe the modules that we want to construct. As usual for α in P denote by H_{α} the element of $ib_0 + a_0$ such that $\lambda(H_{\alpha}) = 2(\lambda, \alpha)/(\alpha, \alpha)$ for every λ in h^X . Similarly for φ in P_k , denote by H_{φ}^k the element of ib_0 such that $\lambda(H_{\varphi}^k) = 2(\lambda, \varphi)/(\varphi, \varphi)$ for every λ in b^X . (Note: The Killing form of g induces a nondegenerate bilinear form on b which in turn induces one on b^X .)

Let F(P'': q, r) be the set of all elements μ in h^X with the following properties:

- (2.6) $\mu(H_{\alpha})$ is a nonnegative integer for every α in P''.
- (2.7) $\mu(H_{\varphi}^{k})$ is nonzero for every φ in P_{k} and $\mu(H_{\varphi})$ is nonzero for every α in $P \cap -P'$.

EXAMPLE: Suppose μ belonging to h^x is such that $\mu(H_{\alpha})$ is a positive integer for every α in P''. Then one can show that μ belongs to F(P'':q, r). The method of showing that $\mu(H_{\varphi}^k)$ is nonzero for every φ in P_k can be found in the proof of (3.6).

We now use some definitions and notations from [3, §§2, 5] (cf. also §§3, 5 here). Let U^k be the centralizer of k in U(g). Let $\mu \in F(P^n; q, r)$. Our aim is to construct a k-finite irreducible U(g) module, denoted $D_{P^n;q,k}(\mu)$ in which the irreducible k type with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_k - \delta_k)$ (cf. 3.7) occurs with multiplicity one and such that on the corresponding isotypical U(k) submodule, elements of U^k act by scalars given by the homomorphism $\chi_{P,-\mu-\delta}$ (cf. §5).

(2.8) REMARK: Fix q and r. For any compatible choice of P" and for any element μ in F(P":q, r), we will show (cf. 3.6) that (i) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$ and (ii) $\tau\mu + \tau\delta - \tau\delta_k - \delta_k(H_{\varphi}^k)$ is a nonnegative integer for every φ in P_k . Now define $\overline{F}(q, r)$ to consist of all μ in h^x satisfying (i) and (ii) above. In general $\overline{F}(q, r)$ properly contains $U_P \cdot F(P":q, r)$. Our constructions

[7]

A generalization of the Enright-Varadarajan modules

59

and proofs in §§3, 4, 5 go through perfectly well for any μ in $\overline{F}(q, r)$ and so we do have a k-finite irreducible U(g) module in which the irreducible k type with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_k - \delta_k)$ occurs with multiplicity one and such that on the corresponding isotypical U(k) submodule elements of U^k act by scalars given by $\chi_{P,-\mu-\delta}$. We have restricted ourselves to the subsets F(P'';q,r) rather than all of $\overline{F}(q,r)$ only because condition (ii) is the definition of $\overline{F}(q,r)$ is quite incomprehensible.

§3

Choose and fix an element μ in F(P'':q, r) as in §2 (cf. (2.6) and (2.7)). For facts about Verma modules that we will be using we refer to [1, 2, 5, 6].

Let *M* be any U(g) module. Let *Q* be a subset of Δ_k . An element *v* of *M* is said to be *Q* extreme if $X_e \cdot v = 0$ for every φ in *Q*. For λ in b^X , *v* is called a weight vector of weight λ with respect to *b* if $H \cdot v = \lambda(H) \cdot v$ for all *H* in *b*. By J(M) we denote the set of all λ in b^X for which there exists a nonzero weight vector of weight λ in *M*, which is P_k extreme where P_k is the positive system of roots in Δ_k defined in §2. For φ in Δ_k , *M* is said to be X_e free if $X_e \cdot v = 0$ implies v = 0. For a subalgebra *s* of *g*, *M* is said to be *s*-finite if every vector of *M* lies in a finite dimensional *s* submodule of *M*. For any η in π_k , let $m(\eta)$ denote the subalgebra of *g* spanned by the elements $X_{\eta}, X_{-\eta}$ and $H_{\eta'}^k$. For the notion of U(k) module of 'type P_k ' we refer to [3, §2].

Let P_0 be a positive system of roots of Δ and let $\lambda \in h^X$. The Verma module $V_{g,P_0,\lambda}$ of U(g) is defined as follows: It is the quotient of U(g) by the left ideal generated by the elements $H - \lambda(H)$, $(H \in h)$ and $E_a(\alpha \in P_0)$. The Verma modules of U(k) are defined similarly. We will suppress g and write $V_{P_0,\lambda}$ for the Verma module $V_{g,P_0,\lambda}$.

We have the inclusions $h \subseteq r \subseteq q$ (cf. §2). Let π be the set of simple roots for *P*. The parabolic subalgebras of *g* containing *r* are in one to one correspondence with subsets of π . The subset of π corresponding to *q* is got as follows: Let σ in h^X be defined by $\sigma(H) = \text{trace}(ad H)|u$. Then

$$\pi(q) = \{ \alpha \in \pi | (\sigma, \alpha) = 0 \}$$

From standard facts about parabolic subalgebras (cf. [8, §1.2]) we know that elements of $P \cap -P'$ are of the form $\sum m_i \alpha_i$ where m_i are nonnegative integers and α_i are in $\pi(q)$. For α in Δ the element s_{α} of

60

R. Parthasarathy

[8]

 W_g is the reflection corresponding to α . It is given by $s_{\alpha}(\lambda) = \lambda - 2(\lambda, \alpha)/(\alpha, \alpha) \cdot \alpha$. We now define a U(g) module W_1 by

$$(3.3) W_1 = V_{P,-\mu-\delta}$$

considered as a U(k) module it has some nice properties.

(3.4) LEMMA: W_1 considered as a module for U(k) is a weight module with respect to b; i.e. W_1 is the sum of the weight spaces with respect to b. Denoting also $-\mu - \delta$ the restriction of $-\mu - \delta$ to b. all the weights are of the form $-\mu - \delta - \sum n_i \varphi_i$ where φ_i are elements of P and n_i are positive integers. Finally the weight spaces are finite dimensional and the weight space corresponding to $-\mu - \delta$ is one dimensional.

PROOF: Since as a U(g) module W_1 is the sum of weight spaces with respect to h = b + a, the first statement is clear. Since no root α in Δ is identically zero on b, we can pick up an element H in b such that for every α in $P, \alpha(H)$ is real and positive. As a U(g) module, the weights of W_1 with respect to h are of the form $-\mu - \delta - \sum m_i \alpha_i$ $(\alpha_i \in P, m_i \text{ nonnegative integers})$. By considering the action of H it is clear that weight spaces of W_1 with respect to b are finite dimensional and the weight space of b with weight $-\mu - \delta$ is one dimensional. Finally since P is θ stable the restriction to b of the weights with respect to h are of the form $-\mu - \delta - \sum n_i \varphi_i$ where φ_i are in P and n_i nonnegative integers.

(q.e.d.)

(3.5) COROLLARY: The U(k) submodule of W_1 generated by the unique weight vector in W_1 of weight $-\mu - \delta$ is isomorphic to the U(k) Verma module $V_{k,P_1-\mu-\delta} \cdot W_1$ is $X_{-\epsilon}$ free for every φ in P_k .

PROOF: Let v_1 be the nonzero weight vector in W_1 of weight $-\mu - \delta \cdot v_1$ is killed by every element of [r, r] hence in particular by every element of $[r_k, r_k]$. On the other hand let \bar{r} be the unique Borel subalgebra of g such that $\bar{r} \cap r = h$ and let $n(\bar{r})$ be the unipotent radical of \bar{r} . If $\bar{r}_k = \bar{r} \cap k$, then \bar{r}_k is the unique Borel subalgebra of k such that $\bar{r}_k \cap r_k = b$. Let $U(n(\bar{r}))$ and $U(n(\bar{r}_k))$ denote the corresponding enveloping algebras considered as subalgebras of U(g). One knows that W_1 is $U(n(\bar{r}))$ free, [2]. Hence in particular it is $U(n(\bar{r}_k))$ free. The corollary now follows from [2, 7.1.8].

(q.e.d.)

There is an ascending chain of U(k) Verma modules containing $V_{k,P_k,-\mu-\delta}$. This chain will give rise to a chain of U(g) modules, which is fundamental in the work [3].

Recall the two distinguished elements t and τ of W_k from §2. The highest weight of the special irreducible representation of k which the U(g) module $D_{P^*:q,r}(\mu)$ will contain is described in the corollary to the lemma below.

(3.6) LEMMA: (i) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$ and (ii) $\tau \mu + \tau \delta - \tau \delta_k - \delta_k(H_{\varphi}^k)$ is a nonnegative integer for every φ in P_k .

PROOF: By (2.4), (2.7) and (2.8), one sees that $-\mu(H_{\alpha})$ is a positive integer for every α in $P \cap -P'$. The elements of $P \cap -P'$ are non-negative integral linear combinations of elements of $\pi(q)$. Since $\delta(H_{\alpha}) = 1$ for every α in $\pi(q)$ it now follows that $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$.

To prove (ii) first suppose φ lies in $P'_k \cap P_k$. We will show that $\tau \mu - \delta_k(H_e^k)$ and $\tau \delta - \tau \delta_k(H_e^k)$ are both nonnegative integers. For this it is enough to show that $\tau \mu(H_e^k)$ is a positive integer for every φ in P_{μ} and that $\tau \delta(H_{\varphi}^{k})$ is a positive integer for every φ in τP_{k} . By (2.6) there exists a finite dimensional representation of g having a weight vector v of weight μ with respect to the Cartan subalgebra h and such that v is annihilated by [r'', r''] (cf. (2.3)). Since $r'_k \subseteq r''$, v is in particular annihilated by $[r'_k, r'_k]$. It is clear from this that $\mu(H^k_{\varphi})$ is a nonnegative integer for every φ in P'_k . In view of (2.7), $\mu(H^k_{\varphi})$ is then a positive integer for every φ in P'_k . Note that $\tau P'_k = P_k$. Hence $\tau \mu(H^k_{\varphi})$ is a positive integer for every φ in P_k . It remains to show that $\tau \delta(H_{\varphi}^k)$ is a positive integer for every φ in τP_k . For this consider the representation ρ of g having a weight vector v of weight δ with respect to the Cartan subalgebra h and annihilated by [r, r]. Clearly then v is annihilated by $[r_k, r_k]$, hence $\delta(H_e^k)$ is a nonnegative integer for every φ in P_k . To show that $\delta(H_e^k)$ is nonzero we give the following reason: one can easily see that the stabilizer of v in g is exactly r. If $\delta(H_{\varphi}^k)$ is zero for some φ in P_k , then $X_{-\varphi}$ would stabilize v. But $X_{-\varphi}$ does not belong to r. Hence $\delta(H_{\varphi}^k)$ is a positive integer for every φ in P_k , so that $\tau \delta(H_k^k)$ is a positive integer for every φ in τP_k .

Now suppose φ lies in $P_k \cap -P'_k$. Let r(q) be the maximal reductive subalgebra of q defined by $r(q) = h + \sum_{\alpha \in P \cap -P'} (g^{\alpha} + g^{-\alpha})$. By (ii) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$. Hence, if $n_{r(q)} = \sum_{\alpha \in P \cap -P'} g^{\alpha}$, there exists a finite dimensional representation of r(q) and a weight vector for h of weight $-\mu - \delta$ annihilated by all of

 $n_{r(q)}$, hence in particular by $k \cap n_{r(q)}$. Observe that $P_k \cap -P'_k$ is precisely the set of roots in P_k , whose corresponding root spaces span $k \cap n_{r(q)}$. Thus there exists a finite dimensional representation of $b + \sum_{\varphi \in P_k \cap -P_k} (C \cdot X_{\varphi} + C \cdot X_{-\varphi})$ with a weight vector for b of weight $-\mu - \delta$ annihilated by X_{φ} for every φ in $P_k \cap -P'_k$. Hence we conclude that $-\mu - \delta(H_{\varphi}^k)$ is a nonnegative integer for every φ in $P_k \cap -P'_k$. Since $-\tau(P_k \cap -P'_k) = P_k \cap -P'_k$. On the other hand $\tau \delta_k = \delta'_k = half$ the sum of the roots in P'_k , while $\delta_k + \delta'_k(H_{\varphi}^k) = 0$ for every φ in $P_k \cap -P'_k$. Thus $\tau\mu = \tau\delta - \tau\delta_k - \delta_k(H_{\varphi}^k)$ is a nonnegative integer for every φ in $\varphi_k \cap -P'_k$.

This completes the proof of (3.6). (q.e.d.)

(3.7) COROLLARY: $-t(\tau\mu + \tau\delta - \tau\delta_k - \delta_k)(H_{\varphi}^k)$ is a nonnegative integer for every φ in P_k .

PROOF: Clear since
$$-tP_k = P_k$$
. (q.e.d.)

Let π_k be the set of simple roots of P_k . For φ in P_k , let s_{φ} be the reflection $s_{\varphi}(\lambda) = \lambda - \lambda(H_{\varphi})\varphi$ of b^X . If φ lies in π_k , s_{φ} is called a simple reflection. For w in W_k , the length N(w) of w is the smallest integer N such that w is a product of N simple reflexions. A reduced word for w is an expression of w as a product of N(w) simple reflections. Choose any reduced word for the element τt of W_k . Following the notation in [5, §4.15], we write it as

$$\tau t = s_1 s_2 \dots s_m$$

where $s_i = s_{\eta_i}$, $\eta_i = \varphi_{i_i}$, $\varphi_{i_i} \in \pi_k$. For λ in b^X and w in W_k write $w'(\lambda) = w(\lambda + \delta_k) - \delta_k$. Having chosen the element μ in F(P''; q, r), we now define elements μ_i of b^X as follows:

$$\mu_{m+1} = -t(\tau\mu + \tau\delta - \tau\delta_k - \delta_k) \text{ and}$$
$$\mu_i = (s_i s_{i+1} \dots s_m)' \mu_{m+1} \quad (i = 1, \dots, m)$$

(3.9) Note that $\mu_1 = (\tau t)' \mu_{m+1} = -\mu - \delta$ and that μ_1 and μ_{m+1} are independent of the reduced expression (3.8). We now define the positive integers e_i by

(3.10)
$$e_i = \mu_{i+1} + \delta_k(H_m^k) \cdot (i = 1, ..., m).$$

[10]

63

With μ_i defined as above, the following inclusion relations between Verma modules are well known [2, 6]:

$$(3.11) V_{k,P_k,\mu_1} \subseteq V_{k,P_k,\mu_2} \subseteq \cdots \subseteq V_{k,P_k,\mu_{m+1}}.$$

Define elements $v_1, v_2, \ldots, v_{m+1}$ of $V_{k, P_k, \mu_{m+1}}$ as follows: v_{m+1} is the unique nonzero weight vector of $V_{k, P_k, \mu_{m+1}}$ of weight μ_{m+1} . For $i = 1, 2, \ldots, m$, $v_i = X_{i_{n_i}}^{\epsilon_i} \cdot v_{i+1}$. Then one knows that v_i is of weight μ_i and that $V_{k, P_k, \mu_i} = U(k)v_i$. Associated to the reduced word (3.8) and μ in F(P''; q, r) is a fundamental chain of U(g) modules: $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$. It will turn out that W_1 and W_{m+1} are independent of the reduced expression (3.8). They are defined as follows: W_1 is defined to be $V_{P,-\mu-\delta}$ as in (3.3). Then W_{m+1} is given by the following lemma.

(3.12) LEMMA: There exists a U(g) module $W_{m+1} = U(g) \cdot v_{m+1}$ such that (a) W_1 is a U(g) submodule of W_{m+1} , (b) v_1 belongs to $U(k)v_{m+1}$, (c) v_{m+1} is a P_k extreme weight vector (with respect to b) of weight μ_{m+1} , (d) W_{m+1} is $X_{-\varphi}$ free for all φ in P_k and (e) W_{m+1} is a sum of U(k) submodules of type P_k .

PROOF: Start with the inclusion of $V_{k,P_{k,\mu_1}}$ in W_1 given by Corollary 3.5 and the inclusion of $V_{k,P_{k,\mu_1}}$ in $V_{k,P_{k,\mu_{m-1}}}$ given by 3.11. By 3.5 we know that W_1 is $X_{-\varphi}$ free for every φ in P_k . Now [3, Lemma 4] gives us the module W_{m+1} with the properties required in the lemma. (One easily sees that the results of [3, §2] do not depend on the assumption there that rank of g = rank of k). (q.e.d.)

(3.13) REMARK: If V and \overline{V} are Verma modules for, say, U(k) then the space of U(k) homomorphisms of V into \overline{V} has dimension equal to zero or one. Thus the inclusion of V_{k,P_k,μ_1} into $V_{k,P_k,\mu_{m+1}}$ given by (3.11) is independent of the reduced expression (3.8) for τt . Hence also the U(g) module W_{m+1} and the inclusion of W_1 in W_{m+1} with the properties listed in Lemma 3.12 can be chosen to be independent of the reduced expression (3.8).

Having defined W_1 and W_{m+1} as above, now for any given reduced word for τt such as (3.8), we define submodules W_2, W_3, \ldots, W_m of W_{m+1} by

$$(3.14) W_i = U(g)v_i$$

where v_i are the elements of W_{m+1} defined after (3.11). We have

[12]

 $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$ because v_i belongs to $U(k)v_{i+1}$, (i = 1, ..., m). The properties of this chain of U(g) modules are summarized below from the work of [3, §3]:

- (3.15) $W_1 = V_{P,-\mu-\delta}$ and each W_i is the sum of its weight spaces with respect to b. Moreover as a U(k) module W_i is the sum of U(k) submodules of type P_k .
- (3.16) Each W_i is a cyclic U(g) module with a cyclic vector v_i , which is a P_k extreme weight vector of weight μ_i with respect to b, i = 1, ..., m + 1.
- (3.17) The P_k extreme vectors of weight μ_i in W_i are scalar multiples of v_i ; for i = 1, ..., m + 1, the vector v_i does not belong to W_{i-1} .
- (3.18) Each W_i is $X_{-\varphi}$ free for every φ in P_k and W_{i+1}/W_i is $m(\eta_i)$ finite (i = 1, ..., m).

(3.19)
$$v_i = X_{-\eta_i}^{\epsilon_i} v_{i+1} \ (i = 1, ..., m).$$

(3.20) Let w be in W_k . Let i = 1, ..., m. Suppose $w'(\mu_{m+1})$ belongs to $J(W_i)$. Then N(w) equals at least m + 1 - i.

We will not prove the properties (3.15) to (3.20) here since they are essentially proved in [3, Lemma 5]. Though (3.20) has the same form as [3, Lemma 5, vi] its proof is different in our case. It is important to first know the case i = 1 of (3.20) to carry over the inductive arguments of [3, §3] to our situation. To this end we prove the following lemma. Before that we make the following remark.

(3.21) REMARK: Let H'_q be the element of h defined by $(H'_q, H) =$ trace (ad H|u), for every H belonging to h, where u is the unipotent radical of q. Since q and h are θ invariant $\theta(H'_q) = H'_q$; hence H'_q belongs to b. One can easily prove the following: For every α in $P \cap -P'$, $\alpha(H'_q)$ equals zero; for every α in $P \cap P'$, $\alpha(H'_q)$ is a positive real number; and for every φ in $P_k \cap -P'_k$, $\varphi(H'_q)$ equals zero while for every φ in $P_k \cap P'_k$, $\varphi(H'_q)$ is a positive real number. (Observe that any φ in $P_k \cap -P'_k$ is the restriction to h of some α in $P \cap -P'$).

Now we come to the lemma which is basic to carry over the inductive arguments of [3, \$3].

[13]

A generalization of the Enright-Varadarajan modules

(3.22) LEMMA: Let w be in W_k . Suppose $w'(\mu_{m+1})$ belongs to $J(W_1)$. Then N(w) is greater than or equal to m.

PROOF: Since $w'(\mu_{m+1})$ belongs to $J(W_1)$ it is in particular a weight of W_1 of for b. Hence by (3.4). $w'(\mu_{m+1})$ is of the form $\mu_1 - \sum n_i \alpha_i | b$, where n_i are nonnegative integers and α_i are in P. That is $w(\mu_{m+1} + \delta_k) - \delta_k = \mu_1 - \sum n_i \alpha_i | b = \tau t(\mu_{m+1} + \delta_k) - \delta_k - \sum n_i \alpha_i b$. Thus,

$$\tau t(\mu_{m+1}+\delta_k)-w(\mu_{m+1}+\delta_k)=\sum |n_i\alpha_i|b.$$

Write $\mu'_{m+1} = -t\mu_{m+1}$. Hence

$$(3.23) \qquad -\tau(\mu_{m+1}'+\delta_k)+wt(\mu_{m+1}'+\delta_k)=\sum n_i\alpha_i|b|$$

where n_i are nonnegative integers and α_i are in P. The left side of the equality in (3.23) is the sum of $wt(\mu'_{m+1} + \delta_k) - (\mu'_{m+1} + \delta_k)$ and $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$. We claim that (3.23) implies

(3.24)
$$P_k \cap -wt P_k$$
 is contained in $P_k \cap -\tau P_k$.

To see this enumerate the elements of $P_k \cap -wt P_k$ in a sequence $(\epsilon_1, \epsilon_2, \dots, \epsilon_k)$ such that ϵ_1 is a simple root of P_k and ϵ_{i+1} is a simple root of $s_{\epsilon_1} \dots s_{\epsilon_1} P_k$ $(i = 1, \dots, k-1)$. Then $wt = s_{\epsilon_1} \dots s_{\epsilon_1}$ (cf. (5, 4.15.10] and [7, 8.9.13]). By induction on *i* one can show that $(\mu'_{m+1} + \delta_k) - s_{\epsilon_1} \dots s_{\epsilon_1} (\mu'_{m+1} + \delta_k)$ can be written as $\sum_{j=1}^{i} d_{j,j}\epsilon_j$ where $d_{j,i}$ are positive integers. Thus $(\mu'_{m+1} + \delta_k) - wt(\mu'_{m+1} + \delta_k)$ can be written as $d_1\epsilon_1 + d_2\epsilon_2 + \dots + d_k\epsilon_k$ where d_j are positive integers. Similarly $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$ can be written as $d'_1\epsilon'_1 + d'_2\epsilon'_2 + \dots + d'_k\epsilon'_k$ where d_i are positive integers. Similarly $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$ can be written as $d'_1\epsilon'_1 + d'_2\epsilon'_2 + \dots + d'_k\epsilon'_k$ where d'_i are positive integers. Similarly $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$ can be written as $d'_1\epsilon'_1 + d'_2\epsilon'_2 + \dots + d'_k\epsilon'_k$ where d'_i are positive integers. Similarly $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$ can be written as $d'_1\epsilon'_1 + d'_2\epsilon'_2 + \dots + d'_k\epsilon'_k$ where d'_i are positive integers. Similarly $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$ can be written as $d'_1\epsilon'_1 + d'_2\epsilon'_2 + \dots + d'_k\epsilon'_k$ where d'_i are positive integers. Similarly $(\mu'_{m+1} + \delta_k) - \tau(\mu'_{m+1} + \delta_k)$ can be written as $d'_1\epsilon'_1 + d'_2\epsilon'_2 + \dots + d'_k\epsilon'_k$ where d'_i are positive integers.

(3.25)
$$-\tau(\mu'_{m+1}+\delta_k)+wt(\mu'_{m+1}+\delta_k)$$
$$=(d'_1\epsilon'_1+\cdots+d'_k\epsilon'_k)-(d_1\epsilon_1+\cdots+d_k\epsilon_k)$$

where $d'_1, \ldots, d'_h, d_1, \ldots, d_k$ are positive integers. Let H'_q be the element of *h* defined by $(H'_q, H) = \text{trace}(ad H|u)$, where *u* is the unipotent radical of *q*. Then H'_q belongs to *b*. We can apply remark (3.21) to (3.25) and conclude that $[-\tau(\mu'_{m+1} + \delta_k) + wt(\mu'_{m+1} + \delta_k)](H'_q)$ is a strictly negative real number unless (3.24) holds. But by looking at the right hand side of (3.23) and applying remark (3.21), we see that $[-\tau(\mu'_{m+1} + \delta_k) + wt(\mu'_{m+1} + \delta_k)](H'_q)$ is a nonnegative real number.

[14]

Thus we have proved the validity of (3.24). Now (3.24) implies that N(wt) is less than or equal to $N(\tau)$. But note that N(wt) = N(t) - N(w), while $N(\tau) = N(t) - N(\tau t) = N(t) - m$. Hence N(w) is greater than or equal to m.

(q.e.d.)

(3.22) enables us to carry over the inductive arguments in [3, §3] without any further change and obtain the properties (3.15) to (3.20).

§4. The k-finite quotient U(g) module of W_{m+1}

The difference between the special situation in [3] and our more general situation becomes more apparent in this section which parallels [3, §4].

Start with an arbitrary reduced word (3.8) for τt and let $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$ be a fundamental chain of U(g) modules satisfying (3.15) through (3.20). Recall $W_1 = V_{P,-\mu-\delta}$. Recall the subset $\pi(q) \subseteq \pi$ corresponding to the parabolic subalgebra q. For α in π and λ in h^X define $s^X_{\alpha}(\lambda) = s_{\alpha}(\lambda + \delta) - \delta$. By Lemma 3.6, $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$, hence in particular for every α in $\pi(q)$. Thus one has the inclusion of the Verma modules $V_{P,s^+_{\alpha}(1-\mu-\delta)} \subseteq V_{P,-\mu-\delta}$ for every α in $\pi(q)$. We now define a U(g) submodule

(4.1)
$$W_0 = \sum_{\alpha \in \pi(q)} V_{P, s_{\alpha}^{\perp}(-\mu-\delta)} \text{ of } W_1.$$

As is well known the Verma modules have unique proper maximal submodules. Let I be the proper maximal U(g) submodule of $V_{P,-\mu-\delta}$. Then each $V_{P,s_{\delta}^{*}(-\mu-\delta)}$ ($\alpha \in \pi(q)$) is contained in I. Hence

(4.2) v_1 does not belong to W_0 .

Now fix some i, (i = 1, ..., m). Define a U(g) submodule (relative to some reduced word (3.8) for τt) \overline{W}_i of W_{m+1} as follows: Let $W_{i,0}$ be the U(g) submodule of all vectors in W_{m+1} that are $m(\eta_i)$ finite mod W_{i-1} ; once $W_{i,0}, \ldots, W_{i,p-1}$ are defined, $W_{i,p}$ is the U(g) submodule of all vectors in W_{m+1} that are $m(\eta_{i+p})$ finite mod $W_{i,p-1}$, $p = 1, 2, \ldots, m - i$. We have $W_{i,0} \subseteq \cdots \subseteq W_{i,m-i}$. We then define $\overline{W}_i =$ $W_{i,m-i}$. Define

(4.3)
$$\bar{W} = W_m + \bar{W}_1 + \bar{W}_2 + \dots + \bar{W}_m$$

Thus for each reduced expression (3.8) for τt , we have defined a U(g) submodule \overline{W} of W_{m+1} .

(4.4) PROPOSITION: For any reduced word (3.8) for τt , define the U(g) submodule \overline{W} of W_{m+1} as above. Then v_{m+1} does not belong to \overline{W} . If $\lambda \in b^X$ is such that W_{m+1} has a nonzero P_k extreme weight vector (with respect to b) of weight λ which is nonzero mod \overline{W} , then $(\tau t)'\lambda$ is a P_k extreme weight of W_1/W_0 .

PROOF: We refer to the proof of [3, Lemma 9].

Since we do not have a full chain of U(g) modules corresponding to a reduced word for t as in [3] but only a shorter chain corresponding to a reduced word for τt , we have to work more to obtain a k-finite quotient U(g) module of W_{m+1} . We now define

(4.5) $W_x = \Sigma \bar{W}$, the summation being over all reduced expressions (3.8) for τt .

(4.6) LEMMA: v_{m+1} does not belong to W_x . Let $\lambda \in b^x$ be such that there is a P_k extreme vector in W_{m+1} of weight λ which is nonzero mod W_x . Then $(\tau t)'\lambda(H_{\varphi}^k)$ is a nonnegative integer for every φ in $P_k \cap -P'_k$.

PROOF: v_{m+1} is a P_k extreme weight vector in W_{m+1} of weight μ_{m+1} . From (3.7) and the definition of μ_{m+1} , we know that $\mu_{m+1}(H_{\varphi}^k)$ is a nonnegative integer for every φ in P_k . Now suppose v_{m+1} belongs to W_X . Since $W_X = \Sigma \bar{W}$, W_X is a quotient of the abstract direct sum $\oplus \bar{W}$, the summation being over all reduced words (3.8) for τt . We can then apply [3, Lemma 7] and conclude that for some reduced word (3.8) for τt , the corresponding \bar{W} has a nonzero P_k extreme vector of weight μ_{m+1} . This vector has to be a nonzero scalar multiple of v_{m+1} in view of (3.17). Hence v_{m+1} belongs to that \bar{W} . But this contradicts (4.4). This proves the first assertion in (4.6).

Next let λ be as in the lemma. Let c be the reductive component of q defined by $c = h + \sum_{\alpha \in P \cap -P'} (g^{\alpha} + g^{-\alpha})$. We claim that W_1/W_0 is c-finite. For this it is enough to show that the image \bar{v}_1 in W_1/W_0 of v_1 is c-finite. For any α in $\pi(q)$ the submodule $V_{g,P,s_a^{2}(\mu_1)}$ of W_1 coincides with $U(g)X_{-\alpha}^{\mu_1(H_a)+1} \cdot v_1$ (cf. [2, 7.1.15]). Thus we have $W_0 = \sum_{\alpha \in \pi(q)} U(g)X_{-\alpha}^{\mu_1(H_a)+1} \cdot v_1$. Hence the annihilator in U(g) of \bar{v}_1 contains $U(g)X_{-\alpha}^{\mu_1(H_a)+1}$ for every α in $\pi(q)$. This suffices in view of [2, 7.2.5] to conclude that \bar{v}_1 is c-finite. Thus W_1/W_0 is c-finite.

68

R. Parthasarathy

[16]

Let $c_k = c \cap k$. Then in particular W_1/W_0 is c_k -finite. But note that $c_k = b + \sum_{\varphi \in P_k \cap -P_k} (C \cdot X_{\varphi} + C \cdot X_{-\varphi}).$

Now choose some reduced word (3.8) for τt and relative to it define \overline{W} as in (4.3). Note that $\overline{W} \subseteq W_X$. For λ as in the lemma, choose a P_k extreme weight vector v in W_{m+1} which is nonzero mod W_X and is of weight λ . Then v is in particular nonzero mod \overline{W} . Hence from (4.4), $(\tau t)'\lambda$ is a P_k extreme weight of W_1/W_0 . Since W_1/W_0 is c_k -finite, it now follows that $(\tau t)'\lambda(H_{\tau}^k)$ is a nonnegative integer for every φ in $P_k \cap -P'_k$.

(q.e.d.)

For our proof of the k-finiteness of W_{m+1}/W_k , we need one more lemma.

(4.7) LEMMA: Let η be in b^X . Suppose $\eta(H_{\varphi}^k)$ is nonnegative for every φ in P_k . Let s be in W_k . Suppose $(\tau ts)'\eta(H_{\varphi}^k)$ is nonnegative for every φ in $P_k \cap -P'_k$. Then $N(\tau t) = N(\tau ts) + N(s^{-1})$.

PROOF: $(\tau ts)'\eta = \tau ts(\eta + \delta_k) - \delta_k$. Since $\eta(H_{\varphi}^k)$ is nonnegative for every φ in P_k , $\tau ts(\eta + \delta_k)(H_{\varphi}^k)$ is negative for every φ in $-\tau ts P_k$. Also $-\delta_k(H_{\varphi}^k)$ is negative for every φ in P_k . Hence $(\tau ts)'\eta(H_{\varphi}^k)$ is negative for every φ in $(-\tau ts P_k) \cap P_k$. Hence the assumption implies

(4.8) $P_k \cap -\tau ts P_k \subseteq \text{complement of } P_k \cap -P'_k \text{ in } P_k.$

Note that $tP_k = -P_k$ and $\tau P_k = P'_k$. So, $-P'_k = \tau tP_k$. So, the complement of $P_k \cap -P'_k$ in P_k is $P_k \cap -\tau tP_k$. Hence from (4.8) we have

$$(4.9) P_k \cap (-\tau tsP_k) \subseteq P_k \cap (-\tau tP_k).$$

Let $(\epsilon_1, \epsilon_2, \dots, \epsilon_j, \epsilon_{j+1}, \dots, \epsilon_m)$ be an enumeration of the elements of $(-\tau tP_k) \cap P_k$ such that ϵ_1 is a simple root of P_k, ϵ_2 is a simple root of $s_{\epsilon_1}P_k, \dots, \epsilon_{i-1}$ is a simple root of $s_{\epsilon_i}s_{\epsilon_{i-1}} \dots s_{\epsilon_1}P_k$ $(i = 1, \dots, m-1)$. Because of (4.9) we can further assume $(\epsilon_1, \dots, \epsilon_j)$ is an enumeration of $(-\tau tsP_k) \cap P_k$. Let

$$\varphi'_{\mathbf{f}} = s_{\epsilon_1} \dots s_{\epsilon_{i-1}}(\epsilon_i) \quad (i = 1, \dots, m) \quad (\varphi'_1 = \epsilon_1).$$

Then φ'_i belongs to π_k . One can show that $\tau t = s_{e_m} \dots s_{e_1}$ and a reduced word for τt is

(4.10)
$$\tau t = s_{\varphi_1} s_{\varphi_2} \dots s_{\varphi_m}$$

i

(cf. [5, 4.15.10] and [7, 8.9.13]). Similarly $\tau ts = s_{\epsilon_j} \dots s_{\epsilon_i}$ and a reduced word for τts is

$$\tau ts = s_{e1} \dots s_{er}$$

Note that $N(\tau t) = m$ and $N(\tau ts) = j$. Now from (4.10) and (4.11) it is clear that $s^{-1} = s_{\varphi_{j+1}} \dots s_{\varphi_m}$ is a reduced word for s^{-1} . These observations substantially prove the lemma.

(q.e.d.)

69

(4.12) REMARK: With the data assumed in Lemma 4.7 we have actually proved more than what is asserted in (4.7): There exists a reduced word $\tau t = s_{\varphi_1} \dots s_{\varphi_r} s_{\varphi_{r+1}} \dots s_{\varphi_m}$ for τt such that $s^{-1} = s_{\varphi_{r+1}} \dots s_{\varphi_m}$.

The following proposition gives the k-finite U(g) module quotient of W_{m+1} .

(4.13) **PROPOSITION:** The U(g) module W_{m+1}/W_x is k-finite.

PROOF: Let \bar{v}_{m+1} be the image of v_{m+1} in W_{m+1}/W_X . Since $U(g)\bar{v}_{m+1} = W_{m+1}/W_X$, it suffices to prove that $U(k) \cdot \bar{v}_{m+1}$ has finite dimension over C. For this again, by well known facts [2, 7.2.5] it suffices to prove that the annihilator of \bar{v}_{m+1} in U(k) contains $X_{-\varphi}^{(\varphi)}$ for every φ in π_k , where $e(\varphi) = \mu_{m+1}(H_{\varphi}^k) + 1$ (observe that in view of (3.7), $\mu_{m+1}(H_{\varphi}^k)$ is a nonnegative integer for every φ in π_k). Thus it suffices to show that for every φ in π_k ,

(4.14)
$$X_{-\varphi}^{e(\varphi)} \cdot v_{m+1}$$
 belongs to W_X .

Suppose (4.14) is not true. Choose a φ in π_k , such that $X_{-\varphi}^{\epsilon(w)}v_{m+1}$ does not belong to W_x . Then $X_{-\varphi}^{\epsilon(\varphi)}v_{m+1}$ is a P_k extreme vector of weight $s'_{\varphi}(\mu_{m+1})$ in W_{m+1} which is nonzero mod W_x . Hence by (4.6), $(\tau ts_{\varphi})'\mu_{m+1}(H_{\varphi}^k)$ is a nonnegative integer for every φ' in $P_k \cap -P'_k$. We can now apply (4.7) and (4.12) and conclude that there exists a reduced word

(4.15)
$$\tau t = s_{\varphi_1} s_{\varphi_2} \dots s_{\varphi_{m-1}} s_{\varphi_m} \quad (\varphi_1' \in \pi_k)$$

for τt such that

(4.16)

$$\varphi'_m = \varphi.$$

Take the reduced word (4.15) for τt in (3.8) and consider the corresponding modules W_m and \overline{W} . By definition $W_m \subseteq \overline{W}$. But in the fundamental chain $W_1 \subseteq \cdots \subseteq W_m \subseteq W_{m+1}$ associated to the reduced word (4.15) for τt , the module W_m is simply $U(g) \cdot X_{-\varphi}^{e(\varphi)} v_{m+1}$. This is clear from the definitions (cf. (3.14) and the definition of v_i after (3.11)) and (4.16). Thus it follows that $X_{-\varphi}^{e(\varphi)} v_{m+1} \in \overline{W} \subseteq W_X$. But this is a contradiction to the hypothesis. Thus (4.14) is true and proved and with that also the k-finiteness of W_{m+1}/W_X .

(q.e.d.)

[18]

§5

Let b be a Cartan subalgebra of k and h its centralizer in g, so that h is a θ stable Cartan subalgebra of g. Let P be a system of positive roots for (g, h) such that $\theta(P) = P$. Let

$$n^+ = \sum_{\alpha \in P} g^\alpha$$

and

$$n^- = \sum_{\alpha \in P} g^{-\alpha}.$$

The following fact is standard if b = h, but it remains true in our general case.

(5.1) LEMMA: Let U^{b} be the centralizer of b in U(g). If the set P of positive roots satisfies $\theta P = P$, we have a unique homomorphism

$$(5.2) \qquad \qquad \beta_P: U^h \to U(h)$$

such that for any y in U^{b}

(5.3)
$$y = \beta_P(y) (\text{mod } U(g)n^+).$$

PROOF: We have

(5.4)
$$U(g) = U(n^{-} + h) \oplus U(g)n^{-}$$

and this decomposition is stable under ad H for every H in h, i.e. $ad H(U(n^- + h)) \subseteq U(n^- + h)$ and $ad H(U(g)n^+) \subseteq U(g)n^+$. For y in U^h , let $y = y_0 + y_1$ be its decomposition with respect to (5.4). Define

[19]

 $\beta_P(y) = y_0$. We claim $\beta_P(y)$ belongs to the subalgebra U(h) of $U(n^- + h)$. Since y is in U^b , y_0 and y_1 are also in U^b . Let $S(n^- + h)$ and S(h) denote the symmetric algebras and λ the symmetrizer map of $S(n^- + h)$ onto $U(n^- + h)$. Then for H in b, $\lambda^{-1}(y_0)$ is annihilated by ad H (extended as a derivation to $S(n^- + h)$). It is enough to show that $\lambda^{-1}(y_0)$ belongs to S(h). Using (1.14), one can show that there exists an element X_P in b such that $\alpha(X_P)$ is a nonzero real number for every α in Δ (= the roots of (g, h)) and such that P consists of precisely those α in Δ such that $\alpha(X_P)$ is positive. It is then clear that in $S(n^- + h)$, the null space for $ad X_P$ is just S(h). Since $ad X(\lambda^{-1}(y_0)) = 0$ for every X in b, in particular $ad X_P(\lambda^{-1}(y_0)) = 0$. Hence $\lambda^{-1}(y_0)$ belongs to S(h), so that $\beta_P(y)$ belongs to U(h).

Now suppose y and y' are in U^b . Let $y = y_0 + y_1$ and $y' = y'_0 + y'_1$ be their decomposition with respect to (5.4), so that $\beta_P(y) = y_0$ and $\beta_P(y') = y'_0$. Then $yy' = y_0y'_0 + y_0y'_1 + y_1y'_0 + y_1y'_1$. Clearly $y_0y'_0$ belongs to U(h) and $y_0y'_1 + y_1y'_1$ belongs to $U(g)n^+$. Also $y_1y'_0 \in$ $U(g)n^+ \cdot U(h) \subseteq U(g)U(h)n^+$. Thus $y_0y'_0$ is the component of yy' in $U(n^- + h)$ with respect to (5.4). We already know that this component is in U(h). Thus β_P is a homomorphism of algebras. (q.e.d.)

The centralizer U^k of k in U(g) is contained in U^h . As usual interpret elements of S(h) as polynomials on h^x . For any φ in h^x , define a homomorphism $x_{P,x}$ of U^k into C as follows:

(5.5)
$$\chi_{P,\varphi}(y) = \beta_P(y)(\varphi) \quad (y \in U^k).$$

The main results of the previous sections can now be formulated. Let b_0 be a Cartan subalgebra of k_0 and b its complexification. Let q be a θ stable parabolic subalgebra of g containing b. The centralizer h of b in g is a Cartan subalgebra of g and q contains h. Let r be a θ stable Borel subalgebra of g contained in q (cf. (1.15) and (1.2)). Let P be the set of positive roots for (g, h) corresponding to r. Define the θ stable Borel subalgebra $r' \subseteq q$ by (2.1). Choose a θ stable positive system P" of roots of (g, h) having properties (2.3) and (2.4). Denote by F(P''; q, r) the set of all elements μ in h^x having properties (2.6) and (2.7). Now choose a μ in F(P''; q, r) and recall the objects associated to it in §§3, 4.

We can now state

(5.6) THEOREM: Let q be a θ stable parabolic subalgebra. Let $\mu \in F(P''; q, r)$. Let $W_{P'';q,r} = W_{m+1}/W_X$ (cf. (3.12) and (4.5)). Then $W_{P'';q,r}(\mu)$ is a k finite U(g) module having the following properties:

72

R. Parthasarathy

- [20]
- (i) W_{P^{*}:q,r}(μ) = U(g) v
 _{m+1}, where v
 {m+1} is the image of the vector v{m+1} of W_{m+1}. The irreducible finite dimensional representation of k with highest weight -t(τμ + τδ τδ_k δ_k) occurs with multiplicity one in W_{P^{*}:q,r}(μ). The corresponding isotypical U(k) submodule of W_{P^{*}:q,r} is U(k)v
 {m+1}; on this space elements of U^k act by scalars given by the homomorphism χ{P-μ-δ}.
- (ii) If τ_λ is an irreducible finite dimensional representation of k with highest weight λ with respect to P_k, then the multiplicity of τ_λ in W_{Pⁿ:q,r}(μ) is finite; it is zero if λ is not of the form (tτ)'(-μ δ Σ_{φ∈P}m_φφ)|b where m_φ are nonnegative integers.

PROOF: By (4.13), we know that $W_{P^*:q,r}(\mu)$ is nonzero and k-finite. By (4.6) the vector v_{m+1} of W_{m+1} does not belong to W_X . The image of v_{m+1} in $\dot{W}_{P^*:q,r}(\mu)$ is P_k extreme of weight $(t\tau)'(-\mu - \delta) = -t(\tau\mu + \tau\delta - \tau\delta_k - \delta_k)$ (which is dominant by (3.7)) and this image generates an irreducible k-module with highest weight $-t(\tau\mu + \tau\delta + \tau\delta_k - \delta_k)$ with respect to P_k .

Based on the preceding sections one can complete the proof of the theorem in the same way as [3, Theorem 1].

It is easy to conclude from (5.6) that $W_{P^*;q,r}(\mu)$ has a unique proper maximal U(g) submodule and hence $W_{P^*;q,r}(\mu)$ has a unique nonzero quotient U(g) module which is irreducible. We denote this U(g)module by $D_{P^*;q,r}(\mu)$. The following theorem is now immediate from (5.6).

(5.7) THEOREM: Let $\mu \in F(P^{"};q,r)$. Up to equivalence there exists a unique k-finite irreducible U(g) module $D_{P^*;q,r}(\mu)$ having the following property: The finite dimensional irreducible U(k) module with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_k - \delta_k)$ (with respect to P_k) occurs with multiplicity one in $D_{P^*;q,r}(\mu)$ and the action of U^k on the corresponding isotypical U(k) submodule is given by the homomorphism $\chi_{P,-\mu-\delta}$.

The uniqueness follows from the well known theorem of Harish Chandra [4]: An irreducible k-finite U(g) module M is completely determined by a nonzero isotypical U(k) submodule of M and the action of U^k on it.

73

REFERENCES

- [1] I. N. BERNSTEIN, I. M. GELFAND and S. I. GELFAND: Structure of representations possessing a highest weight (in Russian). Funct. Anal. and Appl. 5(1) (1971) 1-9.
- [2] J. DIXMIER: Algebres Enveloppantes. Gauthier-Villars. Paris. 1974.
- [3] T. J. ENRIGHT and V. S. VARADARAJAN: On an infinitesimal characterization of the discrete series. Ann. of Math. 102 (1975) 1-15.
- [4] HARISH-CHANDRA: Representations of a semisimple Lie group II, Trans. A.M.S. 76 (1954) 26-65.
- [5] V. S. VARADARAJAN: Lie groups. Lie algebras and their representations. Prentice-Hall, 1974.
- [6] D. N. VERMA: Structure of some induced representations of complex semisimple Lie algebras. Bull. A.M.S. 74 (1968) 160-166.
- [7] N. R. WALLACH: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker. Inc., New York, 1973.
- [8] G. WARNER: Harmonic Analysis on Semisimple Lie Groups I. Springer-Verlag. New York, 1972.

(Oblatum 13-VII-1976)

Tata Inst. Fund. Research School of Math. Bombay, 400 005 India