T. J. Enright and N. R. Wallach
Notes on homological algebra and representations of Lie
algebras
Source: Duke Math. J.
47 (1980), no. 1, 1–15
Primary Subjects:
17B10 Seconday Subjects:
17B56; 18E25; 18G10
Full-text: Access denied (no subscription detected)
Access to Duke Mathematical Journal is available by subscription only. Please select one of the following options; or to exit this window, click your browser's back button.
Euclid Identifier: euclid.dmj/1077313857 Mathmatical Reviews number (MathSciNet):
81c:17013 Zentralblatt Math Identifier :
0429.17012
To Table of Contents for this Issue
[1] I. N. Bernšteĭ n, I. M. Gel'fand, and S. I. Gel'fand, A certain category of ${\germ g}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8, English translation Functional Anal. Appl. 1976 (10) 87–92.
[2] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups and representations of reductive groups, to appear in Annals of Math Studies.
[3] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119–221.
[4] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, New York, 1971.
[5] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387.
[6] A. Rocha-Caridi, Splitting criteria for $\mathfrak{g}$-modules
induced from a parabolic and the Bernstein-Gel'fand-Gel'fand resolution of
a finite dimensional, irreducible $\mathfrak{g}$-module, to appear.
[7] G. Zuckerman, Construction of some modules via derived functors, to appear.
|