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Dirac operator and the discrete series
By R. PARTHASARATHY

Introduction

Let G be a noncompact semisimple Lie group with a finite dimensional
faithful representation and K a maximal compact subgroup of G. Through-
out this paper we assume that rank of K = rank of G. When G/K is hermit-
ian symmetric, M. S. Narasimhan and K. Okamoto (see [9]) constructed most
of the discrete series for G on spaces of square integrable harmonic forms of
type (0, q) (for suitable g) with coefficients in holomorphic vector bundles on
G/K arising from finite dimensional irreducible unitary representations of K.

In general (i.e. when G/K is not assumed to be hermitian symmetric) we
give in this paper an analogous procedure for constructing the discrete series
for G, which we will now briefly describe. We assume (by going to a finite
covering of G, if necessary) that if p is the tangent space at {K} € G/K, then
the isotropy homomorphism «: K — SO(p) lifts to a homomorphism &: K —
Spin(p). (Here SO(p) is the rotation group of p for a K invariant metric on
p and Spin(p) the connected double covering of SO(p).) Then G/K acquires a
G invariant spin structure (see §1). Now let o: Spin(p) — Aut(L) be the
spin representation and o*: Spin(p) — Aut(L*) the two half spin represen-
tations of Spin(p). Let y: K— Aut(L) and y*: K— Aut(L*) be the composite
homomorphisms o & and o* - & respectively. Now let 7: K— Aut(V) be a
finite dimensional irreducible unitary representation of K. Let C*(E,) be
the space of C~ sections of the bundle E, =g, on G/K induced by y* ® 7. Let
D: C*(Ey,) — C*(E,) denote the Dirac operator arising from this spin strue-
ture on G/K (see 1.12) and let HZ(E}) be the space of square integrable sec-
tions annihilated by the Dirac operator D on C*(E),). Our main result is
stated in Theorem 3, § 8 which realizes most of the discrete series for G on
Hf(E,) for suitable 7.

In the construction of the discrete series in [9] a key role is played by a
formula (Theorem 4.1, in [11]) due to K. Okamoto and H. Ozeki, for the usual
Laplacian operator [ ] = (d” + 0”)* on the spaces of vector valued C~ forms
of type (0, g). This formula asserts that 2 [] differs by a certain scalar mul-
tiplication from the action of the Casimir of G. Our main task is to provide
such a formula (see Proposition 3.1) for D? the square of the Dirac operator,
on C*(E},). The proof of this formula utilizes the fact that the Casimir of K
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acts as the same scalar on all the irreducible K-components of the represen-
tation %. (See Lemma 2.2.)

The construction of the discrete class is achieved by first considering
(Theorem 1, § 7) the difference Trace 7+ — Trace 7=, where Trace 7* denotes
the character of the representation 7* of G on the spaces H7(E),) and then
proving (Theorem 2, §8) that one of the two spaces Hjf(E,) vanishes (only
to be able to prove the vanishing part, we had to put the restriction ‘most’).
Our condition is less restrictive than that of [9].

W. Schmid has constructed (see [12]) most of the discrete series for G on
“[*-cohomology” groups of holomorphic line bundles on G/T, where T is a
compact Cartan subgroup of G. R. Hotta has recently constructed most of
the discrete series for G on certain eigenspaces of the Casimir of G, in the
space of L*-sections of some vector bundles on G/K (see [6]).

I am indebted to Professor M. S. Narasimhan for suggesting the use of
the Dirac operator in realizing the discrete series. Further I am grateful to
him for several profitable discussions. I thank the referee who offered sim-
plifications of my proofs of Lemma 2.2 and Proposition 3.1, and who helped
in getting the paper in the present form.

1. Spin structure on G/K and the Dirac operator

Let G be a connected noncompact semisimple Lie group with a finite
dimensional faithful representation. Let g be the Lie algebra of left invari-
ant vector fields on G. Let f be a maximal compactly imbedded subalgebra
of g (i.e. the analytic subgroup of Int(g) corresponding to the subalgebra
adf is a maximal compact subgroup of Int(g)). Let K be the analytic sub-
group of G with Lie algebra f. Let g€ be the complexification of g. We put

p={Yeg|BX, Y)=0 forall Xef}
where B denotes the Killing form of g¢. Then we have
¢ :f+‘p’ fﬂp:o’ [‘p,‘p];.:f’ [fy‘p]gp‘

For any subset m of gC we denote by m¢ the complex subspace of g¢ spanned
by m.

We assume throughout rank of f = rank of g. The restriction of B to p
is a positive definite real bilinear form. Let SO(p) be the rotation group of
p under this positive definite bilinear form. Under the adjoint action of K
on g, p is stable and we get a homomorphism

a: K— SO(p) .

Thus, we get a G-invariant Riemannian metric on the homogeneous space
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G/K, which on the tangent space at {K}e G/K is B|p, when p is identified
with the tangent space at {K} e G/K, in the usual way. We will now give a
spin structure on the Riemannian manifold G/K.

By definition a ‘spin structure’ on an oriented Riemannian manifold M
of dimension % is a principal Spin(n)-bundle ' on M such that the principal
SO(n)-bundle F X g SO(n) is SO(n) equivalent to the principal SO(n)-
bundle F of oriented orthogonal frames of M. In our case F is the SO(p)-
bundle

G X x SO(p)

induced from the principal K-bundle G, by the homomorphism «: K — SO(p).
(We recall that G X  SO(p) is defined as the quotient of G x SO(p) by the
equivalence relation (g, a) ~ (gk, k~'a) for any ke K, ge G and ac SO(p).
The equivalence class of (g, @) will be denoted by {g, a}.) For the spin struc-
ture on G/K we proceed as follows: First, we can assume by replacing G if
necessary by a suitable covering that there exists a homomorphism

&: K — Spin(p)
making the following diagram commutative:
Spin(p)
a/ V
/ a

K —— SO(p)
i.e. such that a = rod. Here, +: Spin(p) — SO(p) is the connected two
fold covering of SO(p). (Note that & is unique.) We can now take for ¥ the
principal Spin(p) bundle G x x Spin(p), induced from the principal K-bundle
G, via the homomorphism &: K — Spin(p). This spin structure is G invariant

in the following sense: G acts on the left on G X & Spin(p) and also on
G X ¢ SO(p) and the canonical map
G X ¢ Spin(p) — G X x SO(p)
defined by
{9, a} —— {g, v(a)}
commutes with the action of G.

Let o: Spin(p) — Aut(L) be the (complex) spin representation of
Spin(p). Since we assumed rank of f = rank of g, the dimension of p is even
and then it is well-known that L is the direct sum of two subspaces L+ and
L~ each of which is of dimension 2™'(2m = dim p) and is stable under o.
We denote by o and o~ the restrictions of ¢ to L™ and L~ respectively. o+
and o~ are called the half spin representations of Spin(p). We now define
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(1.1) XE=0%*-d and Yy =0-4&.

Suppose now an irreducible unitary representation z of K on a finite dimen-
sional complex vector space V is given. Consider the representation y ® 7
of Kon L& V. Because we have a principal K-bundle G on G/K, the repre-
sentation ¥ @ v of K gives rise to a vector bundle E.s, on G/K. (Given a
representation 7: K — Aut(W) where W is a vector space over C or R, the
induced bundle E}, on G/K, we recall, is defined as the quotient of Gx W by
the equivalence relation (g, w) ~ (gk, k~'w) for any ke K, g G, and we W.
The equivalence class of (g, w) will be denoted by {g, w}.) We now define the
Dirac operator; it is a first order linear differential operator acting on the
space C(F.gy) of C= sections of K g,.

To define this we first recall certain basic facts concerning the spin
group. Some of the material we have collected here can be found in [2] and
[3]. Let m be a real vector space with a positive definite inner product and
Cliff(m) the Clifford algebra of m. Thus Cliff(m) is the quotient of the
tensor algebra T(m) on m by the ideal I generated by elements of the form
(z,2):1 + @ . The natural map m<=— T(m)— Cliff(m) is an inclu-
sion by which we identify m as a subspace of Cliff(m). Then if {z, ---, x,}
is any orthonormal base for m one has the relations
(1.2) 2= —1 and x;2, + 2,2, = 0 G#k.
Also {o; @;, «- 2 |1 =1, <%, < +++ < % = n} is a base for Cliff(m). Cliff(m)
has a Z.,-graded structure Cliff(m) = C,m + C_m where C,m and C_m are
respectively spanned by the even and odd products of elements in the above
basis. One has m< C_m. The group Spin(n) (or Spin(m)) exists naturally
as a subgroup of the group C*m of invertible elements of Cliff(m). Indeed
let #+— Z be the antiautomorphism of Cliff(m) which is defined by

€8s+ e > (—1)fe,- - -0,

where ¢, - -+, ¢, are arbitrary elements of m. (It can be checked easily that
the map is well defined.) Then Spin(m) is the subgroup of C*m consisting
of all elements 2z such that

reCym
(1.3) vextem forall eem

Tx=1.
Thus for all e Spin(m) the transformation +(x): m—m defined by er—
wex™ is an orientation preserving isometry of m. Hence - maps Spin(m)

into SO(m). One knows that - is a twofold covering map onto SO(m). More-
over, Spin(m) is simply connected if % = 3.
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When m is even dimensional, the algebra Cliff(m) as well as the algebra
Cliff(m) ® C is a simple algebra and hence Cliff(m) ® C is isomorphic to
the endomorphism algebra of a finite dimensional complex vector space L,
through an isomorphism

(1.4) e: Cliff(m) ® C — End(L) .

This isomorphism ¢ shall be fixed once for all. Since Spin(m) < Cliff(m) ® C,
we have a restriction of ¢ to Spin(m), denoted by 0. One knows that o is the
direct sum of two inequivalent sub-representations o+ and ¢~ on subspaces
L* and L~ of L each of which is of dimension 2™, where 2m is the dimen-
sion of m. Let m, be the subspace of Cliff(nm) spanned by
{2, |1 < 0,0, < 2m, 4, # 1) .

Note that
(1.5) {2, | 1 < 4, < 5 < 2m}
is a base for m,. For any element ze Cliff(m) let X(z): Cliff(m) — Cliff(m)
be the linear map given by

T — 20 — 22 (2 € Cliff(m)) .
An easy computation shows that for 1 <14, J, k < 2m, 7+ J one has

S 0 if £+1,J

(1.6) X(x2;) () = 2¢; if k=1
(—in ifk=37.

It follows that for zem, X(2)(m)<=m. Thus X(z) restricts to an endomor-
phism, also denoted X(z), of m. The following simple lemma is quite useful
for us.

LEMMA 1.1. Let Cliff(m) be identified with a subalgebra of End(Cliff(m))
by the left regular representation

I: Cliff (m) —> End(Cliff(m)) .

When End(Cliff(m)) is considered as the Lie algebra of Aut(Cliff(m)) in
the usual way the subspace m, is the Lie subalgebra corresponding to the Lie
subgroup Spin(m) (i.e. l(m,) is the Lie subalgebra corresponding to the Lie
subgroup l(Spin(m)) of Aut(Cliff(m))). Now, given any algebra representa-
tion o: Cliff(m) — End(W), (where End(W) is the endomorphism algebra
of a finite dimensional real vector space W or the endomorphism algebra of
a complex vector space W, considered as a real algebra), the differential of the
group representation (o|Spin(m)) : Spin(m) — Aut(W) is the Lie algebra
representation (o|m,): my,— End(W). Moreover, the differential of the rep-
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resentation qr: Spin(m) — Aut(m) s the representation X: m,— End(m)
(namely z— X(z)).

Proof. Note that for any z e Cliff(m), there exists a unique element of
Cliff (in) denoted by exp z such that I(expz)=expl(z). The series 1+z+2*/2! +
eee + 2F/E! 4+ -+- converges to expz. Now, let zem, we will show that
exp z € Spin(m). For this, in view of the defining relations (1.3), we have to
show that expze C,m, expz-(expz) = 1 and expz-e-(expz)~'em for ecn.
We have ni, = C,m and hence expz =1+ 2z + 2*/2! 4- ... e C,m. Also, one
sees that (exp2) =1+% + 242 + .-+ = exp (3). But if z =Y a;ax; is
the expression for z in terms of the base (1.5) of m, then z =Y a,a;x; =
— Y a;wx; = —2. Thus expz-(expz) = expz-exp(—2) = 1. Finally one
sees easily that

exp z-e-(exp 2)™ = exp (X(z))(e) em
for e e m, since X(?) leaves m stable. Thus exp z < Spin(it) and we have
1.7 Jr(exp z) = exp X(?) .

It now follows that I(m,) is contained in the Lie subalgebra of End(Cliff(m))
corresponding to the Lie subgroup l(Spin(m)) of Aut(Cliff(m)) (see [5],
Prop. 2.7, p. 108). But both Spin(m) and m, have dimension 2m(2m — 1) 2.
Thus I(m;) is the Lie subalgebra of I(Spin(m)), or identifying by I, m, is
the Lie algebra of Spin(m). Note that the Lie bracket [z, 2'] of two elements
2,2 em, is given by [z, 2] = 22’ — 2’2 and that the map z+ expz is the
‘exponential’ map of ni,into Spin(m). The other assertions of the lemma are
elementary consequence of this fact. The last assertion, for example, follows
using (1.7). (q.e.d.)

COROLLARY 1.1. The differential of the spin representation
o( = ¢|Spin(m)) : Spin(m) — Aut(L)
s the representation (also denoted by o)
o(=¢|lm,) : my— End(L),
where € is the representation of Cliff(m) defined by (1.4).

We now come to the definition of the Dirac operator D. We denote by
C*(Ey,) and C~(Ey,) the spaces C(E,+gy) and C(E,-g,) of C= sections of the
bundles E+g, and E;-g, which are induced by the representations y* ®
and 3~ &® 7 respectively. Also, we denote by C(E.s,) the space of C= sections
of the bundle E.,g, on G/K induced by the representation y ® = of K. We
have natural inclusions
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C*(Ey) — C(Eygy)
and
C(By) — C(Eey)
and we have C(E.gy) = C*(E,) @ C~(E,). Observe that since L is a module

for Cliff p @ C and since p¢<=Cliff p ® C one has a natural bilinear pairing,
also denoted by ¢

(1.8) PR L—L
given by
(1.9) (X Qs) = e(X)(s) (Xep, sel).

This is a Spin(p) module homomorphism, when p¢® L is considered as a Spin(p)
module by the representation 4 & o. One knows that under this pairing
p¢ ® L* maps into L™ and p¢ @ L~ maps into L*, thus giving rise to maps
e p¢ Lt — L~
and
e p¢ QL — L+,
Thus, we have a pairing of K modules
ERLPCRL KV— LRV and
ERQLIICRKRLFRKXV—L TRV.
These maps induce bundle maps

(1.10)

w1 = B —
J 2 EpC®Li®V — E3gy ,

where Ecg;ep, +-+ etc., denote the vector bundles on G/K induced by the

representations of Kon p9¢Q L Q V, --- ete. We also denote by

[ C(EpC@;L@V) — C(ELgy)
and

ﬂ:: C(EpC@Li®V) -_— C(.E’L:F®V)
the induced maps on C= sections. On the other hand, the canonical connec-

tion (see [7(b), §2]) on the principal K-bundle G on G/K gives rise to connec-
tions on the induced bundles E,y, and E, :gy.

Remark: The representation « of K on pC induces the complexified tan-
gent bundle of G/K and the above connection on G gives rise to the Rieman-
nian connection on Eyc. This is clear since the connection on G is torsionless

and its holonomy group is contained in K. (See [7(b) Theorem 2.6 and Corol-
lary 4.3].)
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Identifying the (complexified) cotangent bundle of G/K with the tangent
bundle E,c of G/K by means of the complexification of the Riemannian
metric, let

V: C(ELgy) — C(EpC®L®V)
and
V= C(Er*gy) — C(Ecgr*er)
be the covariant differentiation associated to the above connections. Recalling

that C*(E)) is our earlier notation for C(E,+sy), we now have the Dirac
operators

D: C(E.gy) — C(ELgv)
and
D*. C*(E,) —— C*(Ey)
defined respectively by

oV and
Dt — ﬂiovi .

Il
®

(1.12)

We remark that these operators are elliptic; this is because for any X #= 0
in p, the maps 6(X): LQV—-LQV and ¢(X): L*QV—L*®V are iso-
morphisms and D, D* are homogeneous.

For defining the Dirac operator we have followed [2].

We now want to describe an explicit formula for the Dirac operator.
For this, we define a representation v of g¢ on C=(G), the space of complex
valued infinitely differentiable functions on G, by

v X)f = Xf (Xeg®, feC(@).

Let U(g®) be the universal enveloping algebra of g°. Then v defines a repre-
sentation, also denoted by v, of U(g®) on C=(G).
We now define

CHG, V)= L*RCA RV and
C(GV)=L"RC(AORV.

We define an injective mapping
(1.14) 7: C(Brgy) — LR C~(G) ® V

as follows: Let @ be a section of E,g,. Since E.g, is induced from the
principal K-bundle G, we have a canonical map

GX(LQV)— E.gy

(1.13)
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denoted
(9,2 —{g, 2}, (9geG, zeLQV).

This gives rise to an L @ V valued C~ function 7(®) on G defined by

{9, 7(®)(9)} = P(UK) .
Identifying the space of L Q V valued C= functions on G with L Q C*(G) ® V
in the usual way we get the desired element 7(®)e L Q C*(G) Q V. It is
clear that » maps C*(Ey) into C*(G@, V) and C~(E,) into C(G, V). Put
(LRC(GRV)
=fueL@®C(GQV | ®rQ)(k)(u) = u, (ke K)}
where r denotes the right representation of G on C=(G). Put also
C*G, V) =CHG, V)N (LR C(D RV)
C(GV)=C(GEV)IN(LRC=(G)RQV) .
Then 7 maps C(E,gy) and C*(Ey) isomorphically onto (L ® C=(&) ® V)* and
C*(G, V)° respectively. We now have the following

(1.15)

(1.16)

PRroPOSITION 1.1. For ue C(E.xy)
n(Dw) = (227, (X)) @ v(X) @ 1)(u) ,

where X, +++, X,n is any orthonormal base of p and where &(X;) denotes the
action of X,;ep<Clifi(h) on the Cliff(p) module L.

Proof. The proof of this proposition is straightforward and is left to
the reader.

2. Some notation and two lemmas

Let § be a Cartan subalgebra of g contained in f. Let X be the set of
all nonzero roots of g€ with respect fo HC. A root we X is called compact if
the corresponding root space is contained in € and noncompact if the root
space is contained in pC. Let W = W (S, g¢) be the Weyl group of g¢ and
let W, be the subgroup of W generated by reflections with respect to com-
pact roots. We denote by P the set of all positive roots, by P, the set of all
compact positive roots and by P, the set of all noncompact positive roots with
respect to a lexicographic ordering in X, which we fix once for all. Then we
have P= P, U P,. We define

o=12), ,a, =123 .« and p,=1/23  «.

In the dual (5¢)" of HC we introduce the bilinear form <, > induced by the
Killing form B of g€, in the usual way.

We now study the representation ¥ of §1 in more detail. As remarked
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in §1, the homomorphism a: K— SO(p) may not be liftable to a homomorphism
a: K — Spin(p). However, since Spin(p) — SO(p) is a two-fold covering,
there exists a covering K, — K, which is either trivial or two-fold, such that
a: K— SO(p) lifts to a homomorphism &: K, — Spin(p). The inclusion K c G
induces an isomorphism of fundamental groups. Hence, K, — K extends to a
covering G, — G which is again either trivial or two-fold, such that K, c G,
corresponds to the subalgebra f.

Remark 2.1. Let t be a Cartan subalgebra of the Lie algebra of SO(p),
chosen so that a(h) =t. Since p is even dimensional, the weights of the stand-
ard representation of SO(p) are of the form =+, +X,, +++, £\,.. It is known
that in these terms, the sets A* of weights of ¢* are given by

AY = {1/2(£N, N, £ oo 0 N, | with an even number of negative
signs occurring}

and

A~ = {1/2(£\, £\, & <+« £\,,) | with an odd number of negative
signs occurring}.

By the definition of @, a composed with the standard representation of SO(p)
is precisely the adjoint representation of K on p. Hence, a* is a bijection
between £\, £\, +++, &=\, and the set of noncompact roots. It may be
assumed that a*\; = a;, where «,, ---, a,, is an enumeration of the positive
noncompact roots. Since y* = o*oq, it follows that the sets of weights of
xT and x~ are respectively given by

(2.1 {1/2(+a, +a; & -+ *a,) | with an even number of negative

signs occurring}
and
(2.2) {1/2(+a, +a, £+ -+ +a,)| with an odd number of negative

signs occurring}.

The multiplicity of each weight is the number of ways in which it can be ex-
pressed in the above form. In particular, we note that p, = 1/2(at, + ---
+ a,) is a weight of the representation y. In fact o, is the highest weight
of an irreducible component of y. For this, first observe that the weights
1/2(+a, + --+ + a,,) are just the elements o, — {(®> where ® runs through
subsets of P, and {®> = the sum of elements in ®. Now, if o, is not a highest
weight we would have o, + 8 = 0, — {®)> where g is a positive compact
root and ® is a subset of P,. But this is a contradiction, for this implies g =
— {®) = a nonpositive integral linear combination of simple roots in P.
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Remark 2.2. From the above explicit description of weights of y one can
easily see that if XeY, then
Trace (x*(exp X)) — Trace (x~(exp X)) = L., (<™ — e«¥P).
Now, we give an explicit formula for the differential &: f — p, of the

homomorphism &: K, — Spin(p), where p, = Cliff(p) is considered as the Lie
algebra of Spin(p) by Lemma 1.1.

LEMMA 2.1. Let Yef. Then, @&(Y)eb, is given by

kyl=1

ay) =" B([_Kifk]_’XiXle ,

where X,, «++, X, 1s any base of p, chosen so that B(X;, X;) = 0;;.
Proof. For any Yef, we have
(2.3) X(@(Y) =adY.
Recall we have the relations (see 1.6)
0 if k=4,7
(2.4) XX X)(X,) =4 2X; if k=1 =45, k=2m, 1+7J).
—2X;, if k=3
Now, writing
ay)="_C.X.X,,

we have, using (2.3)
| Y, Xi] =2, CuX(X. X)(X5) (=1, +-,2m).
Hence, it is clear using (2.4) that
B([Y, X, X,) = 2Cy; (1 <9) .-

Thus, we have

ay) = ZMB([_Y’:ZMX,,X, .

Now, the lemma follows on observing that
B(lY, X\, Xi) =0 (=1, -, 2m)
and
B(Y, X, X)X.X, = B(Y, X)), X,) X. X, . (q.e.d.)
We define a subset W' of W by
(2.5) W= {oe W|oPDP}.
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Remark 2.3. One can easily prove that the map W, x W'— W given

by (s, 0) — so is a bijection. Also, for any o W' if P! is the set of non-
compact roots in ¢P and if

o =125, e

then as in Remark 2.1 one can show that p{” is the highest weight of an
irreducible component of . Note that o = gp — ;.

Now, let Y, Y, +-+, Y, be any base of f chosen so that B(Y;, Y;) =
—0;;. We then have the following

LEMMA 2.2. For the representation y of ¥, the Casimir —Y? — Y2 — ...
—Y? of t acts as scalar multiplication by <p, 0> — {0, Or). Forany oce W',
1f Too—p, demotes the trreducible representation of t with highest weight oo — oy,
then T,o_,, occurs with multiplicity one in x and we have

Xt = $UEW1,E(U)=+1 Top—oy,
and
X~ = Docwtem=— Too—py,

Proof. First observe that the sets of weights of y* and ¥~ do not inter-
sect. Indeed, if this were not true, there would have to be an identity
On— Q) — Oy — 200 — Q= 0, —Q — Q) — *+ —
where the a’s are positive noncompact roots, with k even and m odd. When
a noncompact positive root is expressed as an integral linear combination of
simple roots, the sum of the coefficients of all the noncompact ones among
the simple roots are odd. This contradicts the identity above. It follows that

x* and y~ cannot have an irreducible component in common. By Remark 2.2,
we have on H,, the subgroup of G, corresponding to ) g,

Trace y* — Trace x~ = JL,.,, (e — ™"

= Top @ = ) TLocr, (o — )

= 2ew S0)€ (e E(s)e)

= Eaewl 8(0)(ESEWG a(s)esﬂp)(EsewG e(s)espk)_l .
Note that for 0 € W', oo is dominant with respect to P,. Since y* and y~
have no irreducible components in common, the lemma now follows using
Weyl’s character formula and observing that on the K-module 7,,_,, the
Casimir of K acts as scalar multiplication by <op, c0)> — o), 0> = <0, P>—
Oy Pi)- (q.e.d.)

Remark. The fact that for the representation y of f the Casimir
Q(=—-Y:—Y:— ... — Y? acts as scalar multiplication by a constant can
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be proved even without the assumption that rank of f = rank of g.

3. A formula for the operator [ ]

Let 7 be an irreducible representation of K, on V. Consider the Dirac
operator

D: C(E.gy) — C(E1er)
and

D*: C*(E,) — C*(E&)y) .
We now define an operator []: C(E.gy) — C(E.gy) by
3.1 O=D.

Note that one has [] (Ci’(EV)) S C*(Ey,). Also, note that []|C*(E,) = Do D*
and []|C~(Ey) = D*-D".

We now fix a base {Y,, -+, Y,} of f and a base {X], «++, X;,} of p, such
that
B(Yi, YJ) - - 3,“' and
(3.2)
B(X;, X;) = 0i; .
Note that B(Y;, X;) = 0. We then have the Casimir operator Q =
Y — eer = Yi+ X2 o0 + Xie UgO).

PROPOSITION 3.1. If \ is the highest weight of T, then the operator [] is
given by
nOu) = {—1QvQ) @1 + N + 0, + 206 M — D7)
(u € C(ELgy)) -
Here 7 is the map C(E,gy) — L @ C=(G) @V defined in (1.14) and v is the
action of U(g®) on C=(G,) defined in §1.
Proof. We recall that 7 is an injection of C(E.gy) onto (L Q@ C=(G)) RV)
where the equivariant part (L ® C=(G,) ® V) is defined by
(LRC(G)QV) ={pe LR CG) RV | (1k) ® r(k) (k) (®) =
for all ke K}

where 7 is the composite of the map &: K, — Spin(p) with the spin repre-
sentation o: Spin(p) — Aut(L) and r the right regular representation of G,
on C=(G)).

Equivalently, we have,
LRC(G)RV) ={pe LRC(G)RV
(3.3) V) @11+ 1QuY)®L+1Q1®(V))e =0,
for all Yet},
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where, for convenience, we have denoted the differentials of y and ¢ by the
same letters.
By Proposition 1.1, to compute [ ] on C(E.g,), we have only to compute
(227 e(X) @uX) @I (LRC(CHR V)’ .
We have
(2 e(X) @u(X) ® 1)
=2 " X)) QUX)PRL + 3., e(X)e(X) Qu(Xv(X,) ®1

=20 - 1®vX)y Q1 + %Ei,,- e(Xy)e(Xy) ®vIX, X511,

(3.4)

since, by the relations (1.2) we have
(X)) = —1d, e(Xe(X;) = — e(Xy)e(X)) (@ =#17) .
Consider the second term on the right hand side of (3.4). Because of (3.2),
we have
(X, X)] = — X, B(X;, Xi], Y)Y, .
Thus,

— ., s(X)e(X) @ (X, X)) @1
= — L5 B, BlX, X)), Y)e(X)e(X,) @U(Y) ®1

= — % 2 2 BlY o X, X5)e(X)e(X) @ v(Y,) @1

= —2 E(;:i 1Y) ®v(Y)®1 (by Lemma 2.1)
==2,@MNY) L+ 2 x(Y)R®I®L+3,1Q0v(Y)®1.
Thus (3.4) becomes

(Ei &(X:) @ v(X) ® 1)2

=—-1QvQ®1+ (X®VQ)®1 - 1) ®I®L.
Via x ® v ®7, K operates trivially on (L ® C=(G) ® V). Thus on this
space, (X QV)(Q%) R1=1R1R77(Q). According to Lemma 2.2, (Qx) =
<o, 0>1 — o4, p:>1. Since ) is the highest weight of 7, 7(Qx) = N + 204, A1
Together these facts yield

(2, 6(X) @ v(X) ® 1) (L QC=(G) QV)°
= —1@uQ) ®1 + N + 204 A — <0, 0> + 0, OD}+1
=—1RvQR1+ N+ 0, + 20, M — o, 1.

Remark 3.1. Consider the representation T of G, on L& C=(G,) XV
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given by T, = 1®1(9) ®1, where [ denotes the left regular representation
of G,. Then it is easy to see that the canonical action # of G, on C(E.gy)
given by
(Z(9)(s))(’K) = g-s(97'¢'K)
goes over by means of the identification map 7 into T, on (L ® C~(G) ® V).
Again under this identification it is easy to see that the action of an element
Xeg on C(E.gy) corresponds to the action on (L ® C=(G,) ® V)* which is
the restriction of the action on L ® C=(G,) ® V given by
2R R 2R Xf R0,

where X° is the right invariant vector field on G, which has the same value
at e as X. Thus the action 7Z(Q) of the Casimir of g corresponds to the restric-
tion to (L ® C=(G,) ® V)" of the action

tRFQUF— @ (=Y —YF — e —YFP+ XP + s + X0 Qo
which is the same as

R Q2@ (=Y =Y — oo = Yi + X} + - + X5)F Qv
i.e.

R (1YY R R ).

Thus the action 7#(Q) of the Casimir of g on C(E.yy) corresponds to the action
1®vQ) ®1 on (LR C(G)RV)".

We now define a subset ¥, of Hom (§€, C), the significance of which will
become clear in §5. Let F be the set of all integral linear forms on §¢; i.e.
F = {MeHom (¥, C) ; 2\, apKa,a>eZ, VaecP}.
We put
Fr=NeF; N+p,a>#0 Vae P}
and
Fo=NeF; M+ p,a>>0 Vae Py} .
One sees that if A e JF’, then A e T if and only if A + p, is dominant with
respect to P, (i.e., (v + 0., @) = 0 for all Va e Py).
From now on we make the further assumption that the complexification
GC of G is simply connected. This assumption is made only to avoid the nota-
tional inconvenience that one runs into otherwise. In Remark 8.2, we ex-
plain how the constructions in the later sections go through without this

assumption.
Now choose ) € Fi. By our choice of G, )\ gives rise to a character on
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the torus Hc G and hence also on H, C G,, where H, corresponds to f)C g.
Also, as we saw in Remark 2.1, p, gives rise to a character on H,. Thus we
have an irreducible representation A + o, of K, on V,,, with highest weight
N + 0,. Now consider the bundle E, gy, +p, ON G/K = G,/K, induced by the
representation ¥ & 7;.,, of K, on L V;yp,-

Remark 3.2. We assert that the action % of G, on C(E gy, pn) goes down
to an action also denoted 7 of G on C(E.gy,,, ). For this, it is enough to prove
that the action of K, on L® V,.,, goes down to an action of K on L&) V.,
Now, with respect to §, any weight of the representation L ® V;,,, is of
the form g + v, where ¢ is a weight of L and v a weight of V;,, . But one
knows that v is of the form X\ + o, — Y m,«; where ) m; is a non-nega-
tive integral linear combination of positive compact roots. Also, by Remark
2.1, ¢ is of the form p, — {Q>, where QS P, and <Q) = ) ..oa. Thus,
2t + v is of the form N + 20, — > n,a;, where ) n,«; is a non-negative in-
tegral linear combination of positive roots. But, A, 20,, and ), n,q; give rise
to characters on H. Hence each weight of the representation L @ V., gives
rise to a character on the torus H. Hence the representation L & V., of
K, is actually a representation of K.

Now consider the Dirac operator D and the operator [ = D* on
C(Egv, +pn). Now, from Proposition 8.1 and Remark 3.2, we have the fol-
lowing

PROPOSITION 3.2. Let M e F; and V4, the irreducible representation of
K, with highest weight N + 0,. Let & denote the action G on C(E gy, pn). For
the derived action of the universal enveloping algebra of g, if T(Q) denotes the
action of the Casimir operator, then the operator [Jon C(E gy, pn) 18 given by

C(w) = {—7(Q) + <\ + 20, M}(w) .

4. A consequence of the completeness of the metric on G/K

In this section we study the operator [ ] in more detail. The groups G,
and G will be as in §2. We fix a G, invariant measure in G,/K,(=G/K) and
a Haar measure in G, such that for fe C2(G,/K)

(4.) [, fda={ 7)o

where 7(f) denotes the composite function G, — G,/K, EN C. Let an irredu-
cible representation ¢ of K, on V be given. We will define an inner product
(,) in C,E,gy) where C,(E.gy) = {ue C(E.gy)|u has compact support}.
First, we prove the following
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LEMMA 4.1. There exists a positive definite hermitian metric on L such
that for every X e p the symbol map &(X): L — L leaves the hermitian metric
infinitesimally invariant, t.e.,

X)L V) + (L, (X)) =0
for every l, l'e L.

Proof. Let X,, +++, X, be an orthonormal base for p. Let q=pDR
and let a positive definite bilinear form on q be chosen such that for some
Xomsi €R, X, +++, Xom, Xoms: is an orthonormal base for q. Let Cliff(q) be the
(real) Clifford algebra on q so that one has X? = —1 and X;X; + X;X; =0
1Z4,j<2m+1,7i+75. Consider the map :p—Cliff(q) given by
X;— X Xons, (1 <i<2m). One checks easily that (X;X,,+)'= —1 and
(X: Xoms) (X Xomsr) + (X Xoms ) (X Xomsr) = 0 (¢ 7). Thus @ extends to a homo-
morphism of the algebra Cliff(p) into Cliff(q). Since Cliff(p) has no nontrivial
two sided ideal it is easy to see that ¢: Cliff(p) — Cliff(q) is an injection. Clear-
ly, #(p + b,) S, where g, is the subspace of Cliff(q) generated by {X.X;|1=<
i, §<2m +1, i+ j}. But, by Lemma 1.1, q; is isomorphic to the Lie algebra
of the rotation group SO(q). Note that the spaces p + p, and g, have the
same dimension. Since @: Cliff(p) — Cliff(q) is an injection, it now follows
that p + b, is a Lie subalgebra of Cliff(p) (considered as a Lie algebra under
commutation) isomorphic to the Lie algebra of SO(q) which is a compact Lie
algebra. It now follows that there exists a positive definite hermitian metric
on L which is infinitesimally invariant under &(X): L— L forall X €p + p,.

(q.e.d.)

We now fix a hermitian metric (, ) on L such that for every Xebp + b,
and u, ve€ L one has
(4.2) (e(X)u, v) + (u, (X)v) =0.
Since, by definition ¥: f — End(L) is the composite f X p,— End(L) it now
follows that for any Y et and u,v € L one has
(4.3) (X(Y)u, v) + (u, x(Y)v) = 0.
Thus, the representation = of K, on L is unitary. We now fix a hermitian
metric (, ) in V such that the representation = of K, on V is unitary. Thus,
we have for Yef,and w, w'eV
(4.4) (e(Y)w, w') + (w, 2(Y)w') = 0.
The inner products in L and V give rise to an inner product in L Q V defined
by

(4.5) (X L®uv, 6@ =23, ¢, U, v)
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for I;, I; e L and v;, vje V. With respect to this inner product the represen-
tation Y ®7 of K, is unitary. Thus, each fibre in the bundle E,, obtains an
inner product. Now, for u, ve C,(E.,g,) we define
(4.6) (u, v) = S (w(z), v(x))dz .
Gl Ky

It is clear that the completion of C,(E.s,) under the above inner product is
the Hilbert space L,(E.gy) of square integrable sections of the bundle E,g,.
We now define

CG,LRKIV)=LRC(G)RXV and

Lz(Gly L ® V) =L ® LZ(Gl) ® |4 ’
where L,(G,) is the space of square integrable complex valued functions on
G,. Similarly we define the spaces C(G, L* ® V) and LG, L* Q V). We
write C*(G,, V) and Ly (G,, V) for C(G,, L* ® V) and LG, L* Q V') respec-
tively. Also, we define as in §1,
(4.8) CG,LOV) ={ueCG, LRV)|(x(k) Q rk) @ t(k))(w) = u,

for every ke K},

and similarly LG, LQV)’, C*G, V), and LG, V). In LG, LQV)
we define an inner product by setting
49 (Z=®fi®v, X, QI Qv) =32, @, o) (fi [ v}) .
It is easy to see that as in the definition of the map 7: C(E.g,) — C(G,, LQ V)

defined in §1, (see 1.14), every element u e L,(E,s,) gives rise to an element
N(u) € Ly(G,, LR V) and thus defines an injection

(4.7)

(4.10) Nt Ly(Eyrgy) — LG, LQV) .
One has
(4.11) 77(L2(EL®V)) = L(G, LQV) .

Moreover, it is easy to verify that 7 is an isometry. By this isometry 7 we
often identify L,(E.gy) with LG, L ® V)"

Now consider the Dirac operator D: C(E.g,) —C(E,g,) defined in §1 (see
1.12). We now have the following

LEMMA 4.2. If u,ve C(ELgy) and if u has compact support then
(4.12) (u, Dv) = (Du, v) .
Proof. Identifying C(E.gy) with C(G, LR V)’ let u = 2 L@ w,

and v = 3. l;Qf; @ w; where I, l;eL, fi, fjcC=(G), and w,, w,ecV.
Note that f, has compact support for every k. By Proposition 1.1, we have
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Du = 37" 37, (Xl @ v(X)fe @ we
where X,, +++, X, is an orthonormal base for p. Thus, we have using (4.9),

(DU/, U) = izl Ek,j (S(Xi)lky l;)(v(Xt)fk, fj,)(wky w;)
= 3 2 (b (X)) (Foy v(X) ) (Wi, W)

using the fact that (v(X.)f% f7) + (fi ¥(X))f7) = 0 and (4.2). But, we have
by Proposition 1.1,

Dv =377 37, (X))l Q@ v(X)fi @ wj
So, using (4.9), we have

(u, Dv) = 357, 35, - (b (XD (Sfrr 2(XDF7) (Wi w5) - (q.e.d.)

From (4.12) one easily deduces that if u, v e C(E.gy) and if u has compact
support, then
(4.13) (u, (Jv) = (du, v) = (Du, Dv) .
Recall that [(C*(Ey)) S C*(Ey). The map 7 is an isometry of C7(Ey,) with
C:(G, V)* and we can canonically identify the completion of C:(E,) with
L3 (G, V)"

We now define [ ]* (resp. [ ]7) to be the weak realization of []in L (G,
V)" (vesp. L; (G, V)): i.e. the domain D((]*) of []* consists of all P e L{(G.,
V)* for which there exists an element denoted [J® e Lj (G, V)’ such that

(@, Ov) = (O, ¥)

for every + € C# (G, V) and then we define [1*(®) = [J®. (Similarly for )
We define D+ and D~ analogously.
We will have occasion to use the following lemma in §6.

LEMMA 4.3. Let @ c C(E,gy). Assume that ||| < o and ||[[JP|| < .
Then ||Dp|| < oo, (], P) = (D, DP). Moreover if [1p =0 then Dp = 0.

Proof. The lemma is a consequence of the completeness of the metric in
G/K and can be proved with technique similar to the one in [1].

5. Some results of Harish-Chandra

Let &g, be the set of equivalence classes of irreducible representations
of K,. If  is a unitary representation of G, or K, we denote by [7] the equiva-
lence class which contains 7. For any unitary representation ¢ of K, and
o€ &g, we denote by (o: 0) the multiplicity with which é occurs in o. We
write ([o]:8) = (0:8). For any unitary representation 7 of G, let 7|K,
denote the restriction of 7 to K,. Then (7| K,:0) (0 € &,) depends only on the
equivalence class [r]. We also write ([z]| K, :0) instead of ([z|K,]:d). For
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any unitary representation 7w of G, on the representation space H, let H, be
the smallest closed invariant subspace of H which contains every irreducible
closed invariant subspace of H. We denote by 7, the restriction of 7 to H,.
We call 7, (resp. H;) the discrete part of = (resp. H). For any unitary repre-
sentation ¢ and a finite dimensional representation = of K,, we put

(lo] : [2]) = Ede&Kl (lo1 : 0)(Iz] = 0) «

For any unitary representation 7 of G, or K,, let #* be the representation
contragredient to 7. It is obvious that [7*] depends only on [7] and so we
write [7]* instead of [7*].

We fix a e Fi. We write ¢ and V for z,,, and V., , where 7;,, is the
irreducible representation of K, on V,,, with highest weight \ + p,. Now,
for any ge G,, we denote by 7*(g) (resp. #7(g)) the canonical action of g on
L;(Ey,) (resp. Ly(Ey)) where L;(Ey) (resp. L;y(Ey)) is the Hilbert space of
square integrable sections of the bundle E, +g, (resp. E;—g,). Then Z+ (resp.
77) is the unitary representation of G, which is induced by the representa-
tion y* &® v (resp. x~ ® 7) of K,. Let &(G,) be the set of equivalence classes
of irreducible unitary representation of G,. We call w € &(G,) a discrete class
if  contains a representation equivalent to the right (or equivalent to the
left) regular representation restricted to a closed invariant subspace of
L,(G,). We denote by &,(G,) the set of discrete classes in &§(G,). &,(G,) is called
the discrete series for G,. &,(G) is defined similarly. We have the obvious
inclusion &;(G) & &4(G)).

LEMMA 5.1. We have

[7*] = ewet;d(GJ(w|K: [x*@fl)w
where T = (&%), s the discrete part of the representation T+ of G, (also of
G) on LE(E,). The sum on the right hand side s finite.
(The proof of this lemma is similar to that of Lemma 1.2 in [8].)

In the following we collect certain results of Harish-Chandra.

We denote by C(G,) the Schwartz space of G, (for definition, see [4(c),
§9]). For any we &,(G,), we denote by d(w) the formal degree of w (for
definition see [4(a), §3]) and by ©, the character of w. Then 0, is an invari-
ant eigendistribution which is tempered. Hence O, is a locally summable
function on G, which is analytic on G, where G; denotes the set of regular
elements of G,. We denote by E the orthogonal projection of L,(G,) onto
Ly(G,)q-

LEMMA 5.2. For any finite dimenstonal representation o of K,, define
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84(0) = {we &(G)|(w|K:: [o]) = 0} .
Then &,(0) is a finite set. (For a proof see [4(c), Lemma 70].)
LEMMA 5.3. For any feC(G,) put
Cf)(x) = Eweéd(Gl) d(w)@w*(r(x)f) (xe @) .
Then °f is a continuous function on G, and °f = Ef.
For a proof see [4(a), Cor. 3 to Lemma 69 and a remark on p. 100].
LEMMA 5.4. Let @ be a K,-finite function in C(G). Then °p isa B finite
Sfunction which belongs to C(G,), where B is the center of the universal envelop-
ing algebra of g. Moreover, we have
0.(P) = 0.(P) .
For a proof see Lemma 3.2 in [9]. Put
Y ={Hebh a(H) =0, (@c)}.
For any ) e JF’ we denote by 0,,, the unique tempered invariant eigendistri-
bution on G, corresponding to N + p defined in [4(b), Th. 3]. Then we have
A (exp H):0;,, (exp H) = Z,eWG g(s)e* e un (Hebh)
where A (exp H) = [],., (e<™* — =", (This is well defined on H and
H,.) For any v e ¥’ we put
(v + p) = sign ([L., < + 0, @)

Then it is a well-known result due to Harish-Chandra that &,(G) S &.(G,) is
canonically parametrized by ¥, as follows. (We recall that the complexifica-
tion GC of G was assumed to be simply connected. See Remark 8.2 for the
general case.)

THEOREM 5.5. For any \ € ¥, there exists a unique element w(\ + p) €

&4(G), such that
Ouiarm = (=1)"e(N + 0)0,4,
where m = (1/2) dim G/K. Moreover, the mapping Fi— &.(G) given by N\ +—
o(n + o) is bijective. (See [4(d), Theorem 16].)
6. The spaces of square integrable Dirac spinors

Let H; (Ey) (resp. H;(Ey)) denote the subspace of D(C1*) (resp. D(CIM))
consisting of all ® such that [J*(®) = 0 (resp. []7(®) = 0). Since the opera-
tor [ J* is elliptic one has HE(E,) S C*(E,). Also, using the fact that D= is
elliptic and Lemma 4.3 it is easy to see that

H:(Ey) = {pe D(D*)| D*(®) = 0} .
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The operators D+, E]i are closed operators and hence Hi(E}) is a closed sub-
space of Lf(E,). We also denote by H;(E,) the subspaces of L;(G,, V)° which
are images of the above subspaces under the isomorphism #: Lj(E,) —
L(G, V)°. We call these the spaces of square integrable Dirac spinors of
type = with coefficients in the bundle E,.

We denote by 7* the unitary representation of G on H;(E,). Then we
have the following

PROPOSITION 6.1. Put
6.0 = {® € 8@ [ 1.(Q) = N + 20, M)}

where ¥, denotes the infinitesimal character of @ and Q the Casimir operator.
Then we have

[ﬂi] = @ms@d(l) (le: [xi ® T])w
and the sum s finite.
Proof. By Proposition 8.2, 7*(Q) is the scalar operator {» + 20, \) where

7*(Q) denotes the action of the Casimir operator Q on Hy(Ey,,, ). Using this
fact, the assertion is proved just as Proposition 4.1 in [9].

Remark 6.1. In view of the above proposition z* is a finite sum of irre-
ducible unitary representations and hence the character of 7*, denoted by
Trace 7%, is defined as a distribution on G, (and also on G).

PROPOSITION 6.2. The operator [ D(i]i) — L¥(E,) has only finitely
many eigenvalues and the discrete part L¥(Ey), coincides with the sum of all
etgenspaces of El*.

The proof of this proposition is similar to that of Proposition 5.1 in [9]
in view of Proposition 3.2 and shall be omitted.

Remark 6.2. Let p¢ D(|j+) and assume that El*((,v) = Ap where \ is
a scalar. Then from the ellipticity of the operator [], it follows that e
C*(E,). Now from Lemma 4.3, we conclude that Dp e L;(E,). Moreover,
since D and [] = D? commute, we have [ |D® = D[]® = A-D®. Then, by
Proposition 6.2 it follows that D® e Ly(Ey);. Thus, D(Li(Ey)s) S L; (Ey)a.
Similarly, D(L;(Ey)s) S Li (Ey)a-

PROPOSITION 6.3. One has an exact sequence
0 — Hi (By) —— Li(By)e —— Ly (By)s = H; (Ey) — 0,

where HE(Ey,) is the zero eigenspace of [ in LE(Ey),, © the inclusion and j
the orthogonal projection onto H; (Ey)4.
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Proof. If e H;(E,), then as noted in the beginning of §6, Dy = 0.
Conversely, if @e L} (E,); and Dp = 0, then [Jo = D’*¢ = 0 and hence
@ ¢ Hf (E,). Note that the kernel of j consists precisely of the sum of the
nonzero eigenspaces of the operator [ ] in L; (E});. Now, suppose @ € Ly (Ey),
and []J® = M@, where \ % 0. Then ¢ = D(\"'D®) and N"'Dp e Lj(Ey),.
This implies that kernel of j & image of D. Finally, it is clear that image
of D < kernel of j from the argument of Remark 6.2. (q.e.d.)

7. The difference formula

Now consider the representation T* of G, on L*(G,, V) defined by TF =
1® l(9) ® 1 where [ denotes the left regular representation of G, on L,(G,).
Fix any K, finite function @ € C>(G,). Define the operator T; on L3 (G, V) by

(1.1 T: = | P@Tidg.

Note that T and hence T; leave Lif(G, V)° and L¥(G, V), invariant and
the canonical action #*(g) of ge G, on Li(Ey); goes over by means of the
identification map 7 into the restriction of T# on L¥(G,, V);. Moreover, where

(7.2 7= | oo,

it is easy to see that under the identification map 7 the action of Z; on
L(E,), goes over into the restriction of T on Lf(G, V);. Henceforth,
wherever convenient we make these identifications without further mention.
We remark that the orthogonal projection L#(E,) — Lf(Ey,); is the restric-
tion of 1® E® 1 where E is the orthogonal projection of L,(G, onto
Ly(G);. 1Q E®1 itself is the orthogonal projection of L;(G, V) onto
LG, V), Put

(7.3) s = | 200 ® v © (k.

Then E# gives the orthogonal projection Li(G, V) — Li(G,, V)°. It is clear
that L(G,, V), is stable under Ej and that the restriction of Ef to Li(G,,
V)q gives the orthogonal projection onto L#(G,, V)i Thus EFf-(1Q E® 1)
is the orthogonal projection of L#(G, V) onto L¥(G, V);.

PROPOSITION 7.1. #f s an operator of finite rank from Li(E,); into
itself. TioEfo(1® E® 1) s an integral operator of finite rank with an
End(L* ® V) valued C= kernel function Ki which is given by

Ki(w, y) = Sm "o (wky=) (o @ 7)(k)dk , for (@, )€ G X G,
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Moreover S Trace K (x, x)dx exists and coincides with the trace of the oper-
G1
ator 7%,

Proof. For a proof of this proposition see the proof of an exactly similar
proposition, viz, Proposition 6.1 in [9].

We now have the following proposition, which is the analogue of the
‘alternating sum formula’ in [9].

PROPOSITION 7.2. Let p; be the number of moncompact positive roots «
such that <x» + o, @) > 0. Then we have

Trace 7} — Trace T; = (—1)"10,,340)(P) -
(For the definition of the right hand side see Theorem 5.5.)
Proof. By Proposition 1, we have

Trace 7§ = S Trace Ki(x, x)dx .
Gy

We put
A = Trace @) — Trace @, .

Then by Proposition 7.1, we have
A= g dxg {Trace y*(k) — Trace y~(k)} '@ (wka")y(2)dk
G K,

where « is the character of the irreducible representation 7( = 7,,, ) of K.
We now use Weyl’s integral formula: for fe C=(K)),

[, 0 = | I d | bl

where
Auexp X) = TLeep, (0 — &) (XeD)

(as is well known |A,(k) [ is well defined on H and hence on H,) and [W,] is
the order of the group W,. Note that Trace (x*) — Trace (x”) is AdK, in-
variant. Thus, we obtain

(7.4) A= [_Wl,G_]SG do SHK {Trace 7*(k) — Trace x~(h)}

‘p(xkhk™ a )y (h) | Au(R) |* dh dk.
By Remark 2.3, we have
Trace x*(h) — Trace y~(h) = A,(h)

where
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A'n. (exp X) — HaePn (ea(X)lz _ e—a(X)Iz) (XG b) .

Also, remembering that 7 is an irreducible representation of K, with highest
weight \ + 0,, we have using Weyl’s character formula

8(24p) (X)
Y(exp X) = E.eWasA(f)(eeTX) .

Also, using [Theorem 5.5 and observing that (—1)"e(\» + p) = (—=1)""2 we
have

£(s)es e ()
276 A(exp X)

for exp Xe H/ (=expl). For he H/, define
(I),,,(;.H,)(h) = A(h)@)w(l+p)(h) .

One knows that the function ®, ., can be extended to a C= function on H,.
(See 4(c), Lemma 31.) Finally, noting that

A = (=1)'Au(h)

Ouurn (€xp X) = (=) P23

where ¢ = (1/2) dim K/H and making the substitutions in 7.4, we get

A= (—TU”SG deH (=), s (WA Pl ) s
@ 1 1XKy

Now, for ke H, put
Fou(h) = A(h)S "p(wha)dz .
aq

We remark that the restriction of Fo, to each connected component of H;
extends as a continuous function to its closure. (See [4(d)], Lemma 27 and
its proof.) Then arguing as in the proof of Prop. 6.2 in [9], we see that

— (_1\pr+m+a__ 1 A .
A= (=1 . SHI(I)MH,,)(h)F,,(h)dh

By Lemma 5.4, °p is a 3 finite function and it follows from [4(d), Lemma 79]
that

Ouirn(?) = (~1* i | F(9@uizin (Wl

Thus, we have
A = (=1)"10,440/(°P) -
But, we have from Lemma 5.4

0,:+0("P) = Oui1n(P) -
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This proves Proposition 7.2. (q.e.d.)

Now observe that #;|H;(E,), &5, &;, and 7;|H;(E,) give rise to an
endomorphism of finite rank (see Proposition 7.1) of the exact sequence of
Proposition 6.3. It is a simple consequence of the exactness of that sequence
that the alternating sum of the traces of these maps is zero, i.e.,

Trace (%; | Hf (Ey)) — Trace %} + Trace #; — Trace (%; | H; (Ey)) = 0.
Hence,

Trace (%} | H; (Ey)) — Trace (ﬁ;]H;(E,,)) = Trace 7f — Trace 7; .
The following Theorem now follows from Proposition 7.2.

THEOREM 1. Let e F; be given and let T,,,, be the irreducible unitary
representation of K, on the space V,.,, with highest weight \ 4 0,. Let
E =gy, on be the vector bundle on G/K(= G,/K,) induced by ¥* Q) T:4,, and
let C*(Ey,, pn) be the space of C= sections of the bundle E xgy, o, Let w5
denote the unitary representations of G on Hi(Ey,,, pn), the space of square

integrable Dirac spimors of type + with coefficients in the bundle E, I

Let p, be the number of noncompact positive roots a such that v + p, a> < 0.
Then, we have

Trace 77 — Trace 7y = (—1)"20, 40 »
where Trace n* denotes the character of n* and ©,;+. the character of the
discrete class o(\ + p) determined by N + o. (See Theorem 5.5.)
8. The vanishing theorem

Recall the subset W' of the Weyl group W(§C, g°). (See 2.5.) For o0 ¢ W,
we define

f — 1 s
(8.1) io) = { ’ " §§Z§ = J—r1.

LEMMA 8.1. Let v be an irreducible representation of g€ in a finite di-
mensional complex vector space F, with highest weight \. Let

(8.2) LRF,=V,®Ve, -V,

be a decomposition of the t€ module L Q) F'; into a direct sum of irreducible

tC modules V., where &, is the highest weight of the representation of € in V,.
Then we have

(8.3) N+ ol = & + ol
and the equality

(8.4) N+ ol = [& + 0l
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holds if and only if there exists o€ W* such that
(8.5) =0+ 0) — 0 .

The mapping o+ & = o(A + p) — o, 1is a bijection of W* onto the set of
highest weights & appearing in the decomposition (8.2) and satisfying the
equality (8.4).

As a weight of v, &%, & occurs with multiplicity one and a weight
vector of &, is, up to a scalar multiple, of the form e,; X e€,—,, where e,; 1s a
weight vector in F,, belonging to the weight o\ and e,_,, a weight. vector
in L belonging to the weight op — p,.

Proof. The proof of this lemma is similar to the proof of [8, Lemma 5.12].
We just indicate a few points. We have & = p¢ + f, where ¢ is a weight of
v, and f a weight of ¥. Thus, & = ¢ + 0, — {®), for some ® S P, (see
Remark 2.1). Hence, & + o, = ¢t + p — {<®>. Now, the fact that |x + po| =
|& + p.| and that equality holds if and only if & has the form (8.5), follows
using [8, Lemma 5.8] and observing that o — {®) is a weight of the irredu-
cible representation v, of g€ with highest weight p. (See [8, Lemma 5.9].)
The proof can now be completed as in the cited reference. (q.e.d.)

Remark 8.1. Let D be the set of linear forms A on H¢ such that
22\, ap>Ka, a)> is a nonnegative integer for every € P. Then one can easily
see that the map

Dx W'—s F]
given by
O, 0) —— A9,
where A = g(A + p) — p, is a bijection (see [8, Lemma 6.4]).
We now have the following

THEOREM 2. Let xe D and let M = o(A» + p) — p for every e W', so
that N eF; (see Remark 8.1). Now let T;w4,, be the irreducible unitary
representation of K, on the space Vi, with highest weight N + p,. Let
ELi@,N)“n be the wvector bundle on G/K, induced by Y* @ Tior4,,. Let
Hi(Ey,,,, +,,”) denote the space of square integrable Dirac spinors of type
J( = + or —) with coefficients in E"z<0>+p,,‘ Now assume that

(8.6) o, ay # 0 for any noncompact root .
Then Hi(Ey,,,,) =0, if J # j(6), where j(o) s defined by (8.1).

Proof. Assume j = j(o). Since A + o, = on + 0p — p,, we have
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(8.7 Viorso, QLS Vo @ Vopp, @ L .
Here consider V,; ® L. Let
(8.8) Va@Li=3]V,

be a direct sum decomposition of V,;® L into irreducible ¥ modules V,
where ¢, is the highest weight of the representation of € in V.. In view of
Lemma 8.1, one sees that for each ¢

(8.9) N+ 0l = &+ 0l -

We assert that equality cannot occur when the condition (8.6) is satisfied.
For, we have by Lemma 2.2,

(8.10) L= Ewwha‘(ﬂ::‘ fo’—f’k .

Thus, if for some ¢ appearing on the right hand side of (8.10), VSV, ®
Voo, for some &, such that |& + o.] = M + o[, then we will have

(8.11) oN = T,

for otherwise no weight vector of the form e,; ® €,,-,, Which is given by
Lemma 8.1 can belong to V,; ® V.,—,,. We will now prove the assertion that
equality does not hold in (8.9), by showing that (8.11) is impossible. For this
first note that ¢ # 7 since j(z) = j # j(0). Hence also ¢P == tP. But since
o and 7 belong to W, it follows from the definition of W*, that P, is con-
tained in oP as well as zP. Thus, there exists a noncompact « € gP such
that —ae7P. Since ve D, (\, &’> = 0, for every a’ e P and hence we con-
clude that

{on, 0> =0 and
N, —ap =0,
But it follows from the assumption (8.6) of the theorem that {o\, a)> > 0.
Using (8.12) we then conclude that o) = a. But this contradicts (8.11).
Thus when the condition (8.6) of the theorem is satisfied we have concluded
for every & such that V., occurs in the decomposition (8.8) that

(8.12)

(8.13) N4 o] > & + 0l -
Now, by (8.7) and (8.8), we have
(8.14) Viorso, ® LS X Vopop @V S LV,

Suppose now Hj(Ey,,, +p”) # 0. Then by Proposition 3.1 there exists a non-
zero square integrable eigenvector in C/(E, 2(0) +pn) belonging to the eigenvalue
M 4 20, M) for the action of Q on C/(Ey,,, +pn)' Note that A + 2p,
N> = + 20, A). Now (8.14) implies that for some V,, occuring in the
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decomposition (8.8), with the obvious notation, there exists a nonzero square
integrable eigenvector in C(EL®V€I) belonging to the eigenvalue {\ + 20, \)
for the action of Q on C(EL®V5,)- Let « be this eigenvector. Now consider
the Dirac operator D and the operator [ ] = D* on C(E’L®V€l). Denoting by 7
the action of U(g®) on C(EL®V5,) we have by Proposition 3.1,

[ = — 7@y + <& — 0. + 20,6 — o>
i.e.

[l = =0+ 20, M9 + {6+ 0n, &+ 00 — K0, D} ¥
i.e.

O = {l1& + 0" — IN + o[} 9.
In particular [ ]y and hence, by Lemma 4.3, D+ also are square integrable.
Thus, by Lemma 4.3 again,

(D, DY) = (O, ) = {&1 + O, & + 06) — N+ 0, 0 + 00N, ) «

But the left hand side is nonnegative while the right hand side is strictly
negative in view of (8.13). This is a contradiction.
Thus, we conclude that Hg(E,,X(,,W ) =0. (g.e.d.)

Now, let the notation be as in Theorem 2 and assume that the condition
(8.6) is satisfied. Then, from Theorem 2 we have
H{(Eyl(o)ﬂn) =0 for j = j(o).
It follows that
Trace 7j) — Trace n3 = €-Trace mifs) ,
where Trace 7, is the character of the unitary representation 7%, of G on
Hf(EVX(,,,Hn) and where ¢ = +1 or —1 according as j(6) = + or —. It now

follows from Theorem 1, §7, that
Trace 73(5) = O, u04p) «

But, by Proposition 6.1, 7#(¢) is a finite sum of irreducible unitary representa-
tions of G. Using [4(a), Theorem 6 and its corollary] we obtain the following

THEOREM 3. Let the notation be as in Theorem 2 and let Tyo denote the
unitary representation of G on HE(E, 1(0)””). Assume that the condition (8.6)
of Theorem 2 is satisfied. Then we have

[730] = o\ + o) ,
where [i(])] denotes the equivalence class of the representation i) and
o\ 4 o) s the discrete class corresponding to N € F|. (See Theorem 5.5.)

Remark 8.2. When the complexification G¢ of G is not assumed to be
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simply connected, the set §,(G) of discrete classes of G is parametrized by
the subset F4(G) of F| defined as follows:

(@) = {ve F;| N gives rise to a character of the compact
Cartan subgroup of G with Lie algebra §.).

The correspondence between &,(@) and F4@Q), due to Harish-Chandra, is
again in the sense of Theorem 5.5. Now, given \ e F4(@), the representation
XX Tsp, of  gives rise to a representation, also denoted ARQTi0,, of KC G,
the subgroup with Lie algebraf. Thus G acts on the vector bundle Eoer,, o
on G/K, on the space of sections and also on the spaces Hz(E,, +0,)- In parti-
cular, when the condition (8.6) is satisfied, the discrete class @(\ + p) € §,(G)
is realized by Theorem 3.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY.
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