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On a Construction of Representations
and a Problem of Enright

Vinay V. Deodhar
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

§1. Introduction

This paper is an attempt to understand the concept of completions of certain
(infinite dimensional) representations of complex semi simple Lie algebras as
introduced by T. Enright in [3, 4]. The completion is a process (a functor C, as we
will see later on) of obtaining new representations from a given one, the latter sitting
as a sub-representation. One of the standard techniques in representation theory of
building new representations is to induce from representations of sub-groups. This
is very extensively used in Harish Chandra’s Theory of representations [5]. The
process of completion is equally effective as demonstrated by Enright; he is able to
build Harish Chandra modules for real semi simple Lie algebras and give an
algebraic Theory of the discrete series and more generally fundamental series
representations. However, his construction of completions is complicated and has
to be done in two stages; first for s/, and then for general Lie algebras. Also the
description of structure of the completions is somewhat indirect.

In an attempt to remove these drawbacks, we have come across a certain
functor D, (see §2). There are indications (e.g. Proposition 3.4) to show that this
functor may turn out to be an important one. However, the consequences are not
well understood as yet. The completion functor C, sits as a naturally defined ‘sub
functor’ of D,. This description is quite transparent and as an illustration of this
fact, we solve an important problem posed by Enright [3,§4]. We remark here that
our construction makes sense in the setup of infinite dimensional Lie algebras
introduced by Kédc and Moody (cf. [6] for an exposition of these Lie algebras; see
also the remark at the end of §3 here).

The paper is arranged as follows: In §2, we give the construction of functors D,
and C, and prove some elementary properties. In § 3, we investigate what happens
on tensoring with finite dimensional representations. In §4, we consider the
problem posed by Enright.

My sincere thanks are due to V.S. Varadarajan and R. Parthasarathy for useful discussions and also
to J.E. Humpbhreys for a question which led to the formulation of Theorem 2.3 in its present form.

§2. Constructions for functors D, and C,

Let g be a complex semi-simple Lie algebra; b2h be respectively a Borel
subalgebra and a Cartan subalgebra. Let @ be the root system of (g, h); we have,

—_—

A. Bouaziz has independently given a proof of Theorem 4.2 above; this is contained in his paper
(unpublished) “Sur les representations des Algebres de Lie semi-simples construites par T. Enright”

0020-9910/80/0057/0101/$03.60
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g=bh@@Pg* Let " be the positive root system corresponding to b and 4 the set of
acd

simple roots. Choose a Chevalley basis {x,,. y,} yea+ U {H,},4- Let n* (respectively
n~) be the nilpotent subalgebra corresponding to @* (respectively —@™*). For a
subalgebra a of g, let U(a) denote the universal envelopping algebra of a.

Let ./ be the category of g-modules A satisfying (i) 4 is h-semisimple (i.e. a
weight module)and (ii) U (n~)-action on A is torsion-free. Let .# be the subcategory
of .o/ consisting of modules M which satisfy a further condition (iii) M is U(n*)-
finite (This is equivalent to saying that x,, for pe®™* acts locally nilpotently on M.)

Fix a simple root ae 4. For brevity, we write y, =y, x, =x and H,= H. We define
a functor D,: .7 — .o/ as follows: Let Ae.oZ. Consider the set A" of formal symbols
{y "al0<neZ,acA}. Define an equivalence relation ~ on 4’ by: y "a~y *a'iff
ya=y"a'. Let D (A)=A'/~. It is fairly easy to see that D_(A4) has a vector-space
structure. We now give it a g-module structure. We need a lemma.

Lemma 2.1. Given zegand 0<reZ,30<seZ such that y*z=u-y" for some ucU|(qg).

The proof of this lemma is clear from the identity:

t
Yez=3 (t) (adyy(z)-y/
FENAY)

and the fact that ad y is nilpotent on g. We note here that it is possible to write down
u in terms of the Chevalley basis; we will need this precise information later
(Proposition 2.5, 3.4).

Let y "aeD,(A)and zeg be given. Define z- y""a=y *uaeD (A) where s is the
integer given by Lemma 2.1. We now have

Proposition 2.2. The above action of g on D,(A) is well-defined and makes it a g-
module.

Proof. The proof is quite straight-forward and uses Lemma 2.1 again and again. We
omit the details.

It is easy to see that D, (A4) is a weight-module; If ae A4 is of weight ueb*, then
y~"ais of weight u+na. Further, it is readily checked that D, (A) is U(n™)-torsion-
free as A4 is so. Thus D, (4)e o/ again. Also A<D, (A). Next, given feHom (4,,4,)
define D, feHom,(D,(4,). D,(4,)) by (D, (f))(y~"a)=y~"f(a). Then D, is indeed a
functor from .o/ —.o/. We call this the a-localization functor.

We now turn to the subcategory .#. Let Me.#. Then D, (M) is defined and is in
o/ . However, D,(M)¢ 4 as x, does not act locally nilpotently on it. (We will see later
that x,, pe®™, ¢ + o always acts locally nilpotently on D,(M) for Me.#.) Define

C.(M)={£eD,(M)|x,* ¢=0 for some a(p)>0, ped™* arbitrary}.

It is easy to check that C (M) is a g-submodule. (Observe that in Lemma 2.1,
y can be replaced by any element z such that adz is nilpoint. In our case, we take
z=x, and use the fact that x, acts locally nilpotently on M.) Also, M= C,(M).
It is quite clear that given M,, M,es and feHomy(M,, M,)
(D, (fN(C,(M ) E C,(M,). Thus D,(f)/C,(M )eHomy(C,(M ), C,(M ). Thus C,
is a functor from .# to 4.
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We recall the definition of completions (cf. [3,§3]): A module Pe.# is said to be
complete with respect to « if for every integer n=0, y"*': P[n]*>P[—n—2]%is
bijective; here, P[n]={peP|H -p=n-p}and P[n]*={peP[n]|x-p=0}. Amodule
M'’e.# issaid to be a completion of a module M e.# if (i) M" is complete with respect
to a, (i) MM’ and (iii) M'/M is y-finite.

We now prove:

Theorem 2.3. Let Me.9 be any module. Then
i) C,(M) is a completion of M.

i) If M’ is any completion of M then C (M) M’ such that /M =identity.

Proof. (i) By the very definition of C (M), C,(M)/M is y-finite. So we have only to
show that C_ (M) is complete with respect to a.

Let0<keZ and 04 ¢e C,(M)[ —k—2]*. Since ¢ is an x-invariant of weight <0
and C,(M)/M is y-finite, it is clear that e M (Observe that C (M)/M is a direct sum
of finite dimensional {x, y, H}-modules). Consider &=y %! -¢eD, (M). We then
have,

Xyt E=y o 2oy — (k+2)(H +k+ 1) ¢
""Z(H—(k+2)(H+k+l))f (as x
Yy (—k=2—(k+2)(—k—2+k+1))
=0.
Thus x - £=0. As remarked earlier, x,, for ¢ o always acts locally nilpotently on
the whole of D, (M). (We will prove thls later.) Thus e C,(M) by definition. Also,
EeC,(M)[k]* and y** ' E=¢. We have therefore proved that C,(M) is complete.

(ii) Let M’ be any completion of M. Consider the inclusion M<5M’. By
functoriallity of C,,we get a map C (M)——Ei“) C,(M). It is easy to see that C,(i) is
an injection. Also, C,(M")/M is y-finite (as C,(M')/M' and M'/M are y-finite) from
which it is clearly seen that C,(i) is surjective too. (Observe that both C, (M) and
C,(M’) can be considered to be submodules of D,(M")). It now remains to be proved
that C,(M')=M".

If C,(M')=% M’, then choose a non-zero x-invariant 0 in C,(M')/M'. As 0 is of
non-negative weight k. it can be easily seen that 3¢e C,(M') such that x- ¢ =0and &
=0. (More generally, in the category .#, a ‘dominant’ invariant can always be
lifted.) From s/,-theory, it follows immediately that y**'0=01i.e. y**'¢eM’ and
moreover, x- y*+!'¢=0. Now y** ' ¢eM’'[ —k—2]* and M’ is complete so 3¢, e M’
such that yk+!'¢& =yk+1 ¢ Thus &, =¢EeM’ which is a contradiction as &=0+0.
This proves that C (M')=M".

This completes the proof of the theorem.

-E=0)
¢

Corollary 2.4 (Enright, [3, Proposition 3.3]). For Me.#, a completion exists and any
two completions are naturally isomorphic.

Proof is immediate.

Remark. The main thrust of the above theorem is the fact that one gets a concrete
model C,(M) for the completion of M. The advantage of having such explicit
description at ones disposal is quite obvious.
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Proposition 2.5. Let Me.#, then x,, for (x+)pe®™* acts locally nilpotently on the
whole of D, (M).

Proof. The proof essentially uses the fact that for i>1, j arbitrary (€Z), i¢
+joeP=ip+joec®*. To simplity the computations, we assume that i¢ +jo¢ P
Viz2. The argument in the general case is similar though slightly more
complicated.

We have, for any s>0, by Lemma 2.1

VX, =X,V P x, Y xR

where ¢, ..., ¢! are integers depending on the choice of the Chavalley basis and
s. The integer p depends only on the ‘type’ of the root-system generated by ¢ and o.
(In all cases, p<3.) Also, the above holds for all s=p. We rewrite as follows:

VX=X, "+ ...+ cPx,_ )y
=(VPx,+dPy" ' x, . +dDx, )P

@

Thus,
Xpy "E=yT PP X, +dP Y X, A +dPx, ) E (s—p=n,EeM).
So
xipyAné:y~(n+tp)(ypxw+d(ln+t—l)_ypAxxwua+.”+d(;+t—l),x¢ﬁpa)
..(y”xq,+d‘1")y”‘1x¢*a+...+dg')xq,7pa)§
— y—(n+tp) & b i a0 (%)
=y IR S SRS (b B v S
i=0 a; =20
Ta,=t
Ea,] tp—i

We next observe that there exists /=1 such that for any sequence k,,...,k, of
integers =1, one has:

s k s—1lkp
Xo - (p- 1)“.x‘0p* pa = Up-— lxtp (pf Da for some u,_ IGU(Q), S%lkp
s kp—1 k — s—Il(kp+kp-1)
x¢~(ﬂ'2)a'x¢p~(p-l)a'xfpp—pa_up~2x(pf(p£2); for S.Zl(kp_'—kp—l) (**)
and so on.

We have to show that x},-y~"¢=0 for r>0. Let q,, ..., q, be such that x4 _,, ¢
=0Vi(¢eM). Lettz2q,+(I+1)g, +... +(I+1)"q,. We will show that x{,y~"¢=0.
Intuitively this is clear from (%) and (**). We make it more explicit.

Take a term y'x% ... xé _ occuring in (¥). Now either a,>q, in which case

Xo¥ po ¢ =0and this term vanishes or a, <q,,. Next, either a, 2 lap +q,_in which

case
xf}"i}z— 1a' xawp— paé =Up_ 'xzp:(lpilffai =0
and the term vanishes or ap ) —la,<q, , and so on.
Thus the term y'-xg° ... xg»_ £ =0 unless
a,<q, a, —la,<q, |, ....,a9—la,+...+a,)<q,.
But then
ag<qo+lq, +1I+1)g,+...+1(1+1)P" g,
a,<qy+lg,+...+1(1+1y"2q,

and so on.
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Thus t=a,+...+a,<q,+(+1)q,+... +(I+1)" g, which can’t happen. We
have thus proved that x|, y~"¢=0. This completes proof of the proposition.

It is clear from the above proposition that an element y~" €D, (M) belongs to
C,(M)iff x'y " ¢=0for t > 0. In other words, the s/, (= {x, y, H}) corresponding to
o governs the difference between D (M) and C,(M), a fact which is only to be
expected. We now give a criterion to determine whether an element y~ "meD (M)
belongs to C,(M) or not. First observe that any element ¢40eD,(M) can be
uniquely expressed as y~"m, n=0, meM and n is minimal with respect to this
property. We call this expression as the ‘minimal’ expression for & e.g. ée M iff n=0
in the minimal expression.

Theorem 2.6. Let (€D, (M)\M be an element of weight ieb*. Let ¢ =y "m be the
minimal expression for & (n>0). Then E€ C (M) iff the following two conditions are
satisfied.

i) n—i,=j=1(i,=A(H),jeZ).

ii) x'y' " “m=0 for some t=].

Proof. We have,

Y x=xy"t =+ 1)(H +n)y"
=(xy—(n+1)(H+n))y"
=(yx—n(H+n+1))y"
Hencexy "m=y "*Y(yx—n(H+n+1))m. As ¢ is of weight 4, m is of weight u =4
—na and so H-m=p(H)-m=(A,—2n)m. Thus xy "m=y "*Y(yx—n(i,—n
+1)m.
Continuing in this way,
Xy tm=y - "yx—(m+t—1)(A,—n+1)...-(yx—(n+1)(4,—n+2)
(yx—n(A,—n+1)m
=y " Dym, +(—1)nn+1)
co(n+t=1)A,—n+1)-...-(4,—n+1t)-m for a suitable m, eM.
Assume that ée C (M) ie. x"-y "m=0for some t>0. Thus, ym, +(—=1)-n...(n+t
—=1)-(A,—n+1)...(A,—n+t)m=0.Since m¢ y M (otherwise £ =y~ "m would not be
a minimal expression), the coefficient of m in above equation must be zero.

Thus A, =n—j for some 1 <j<t.
Also, we have,

X'y "m=y " Tyx—(n+t—1)(t—j) ... (px—(n+))-1)
yx-c(yx+n(—1)m (*)

We remark here that the brackets in (+) commute with each other and so can be
taken in any order.
Next, we have, for s>1,

y“xszy*‘* lyxs” lx:ys I(XS "y—(s—l)-xs"z(H+s—2))x
=y i oyx—(s—= )y X H(H +s)
=y I3 Yyx —(H +5)).
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From this one derives immediately that for any m'e M with H - m'=am’, one has
yx*m' =yx(yx—(@a+2)(yx—2(a+3)) ... -(yx—(s—1)(a+s)m'. ()
Using this in (*), we get

yx(yx+m+j—=2)...-(yx+n(i—1))m=yxim.
Thus
Xy m =y (px = (et = 1)(E =) - .. - (X — (0 ) - Vixim,
=y "y (yx—(n+t=1)(t =) ... (yx—(n+j)m
(by the remark made earlier).

Use (x*) again with x, y interchanged and m'=m, s=t—j to get
Xy T im=xy(xy—(m+j+2)- ... (xy—(t—j—D(n+j+t—j)m
=(yx—m+j)(yx—=2n+j+1)...-(yx—=(t—j)(n+t—1)m.
Thus (%) reduces to
X'y "m=y ity

Therefore x'y'~Im=0. This proves the ‘necessity’ part.

We observe that we have also proved the following: Under the hypothesis n
—A=j21, X'y "m=y =D x". y'=im ¥t>j The ‘sufficiency’ part is now
clear.

This concludes the proof of the theorem.

Corollary 2.7. Let me M be a non-zero vector such that (iym¢ y M, (ii) Hm = um with
pueZ,u<0and(iii)x *m=0.Theny "me C,(M)iff n< — (u+ k) where k is the least
integer such that x*m=0. (Note k< —u.) Further, k is also the least integer such
that x* y* P m=0.

In particular, if m is x-invariant (i.e. k=1) (along with ;1 <0) then y "me C,(M)
iff n< —(u+1) and y**'m is a x-invariant as well.

Proof. We prove that y***~'m¢ C_ (M) and y***me C,(M). By the theorem above,
YR Tme C (M) iff x'y' %+ 'm=0 for t>0.
H—-k+1

t—k+1
mutation formula for x"- y* (cf. [7, §2]).) Here,

Since x*m=0, this is equivalent to ( )x""sz. (We use com-

(H—k+1) (H—k+1)H—k)...(H=k+1—t+k—1+1)

t—k+1 1-2...(t=k+1) '
Thus
Hek+1y ,,  (utk=1) . (utk—(—k+1) ,
- 140
(t—k+l)x " 2. (—k+1) XoomE

as x*"'m=+0 and u+k<0. Hence y***~ 'm¢ C_(M).
Since x*m=0, it follows immediately that x'y' " *m=0V:=k and so
Vrkme C, (M),
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Next, it is clear that x*-y***m=0 as x*m=0. We now prove that
XK= y"+*km 40, 1f u+ k=0, then this is clear so assume that u+k <0. Now we go
back to various identities given in the proof of the Theorem above. We use them
without mention. Thus,

Xyt m= R (x4 (— = 2) - (rx (k= 1) (== k) m.
Also,
yx’m=yx(yx—(u+2)...(yx—(s—(u+s)m for s=0.
So
k= byptkg =y Lk Uk =T — (k= 1) (u+ k) y* 2 %% 2m+ ...
F(=1f M k=1) .21 (k) ... (1 +2) - m).
Note that the coefficient of m=(—1)*"' - k—1!(u+k)...(u+2)*0as u+k<0.So

x¥= T y#+km=0=me yM which is not true. Hence x*~ ! y***m 0.

The particular case of k=1 is quite clear.

Remark. If one drops the condition u+k <0 (i.e. x *m=0) then in general one can’t
say anything about the biggest n such that y~"me C (M).

§ 3. Tensoring with Finite Dimensional g-modules

Although finite dimensional g-modules F do not belong to .<7, the tensor product
F ® A with A € o/ belongs to .« as can be easily verified. This tensoring with finite
dimensional modules has turned out to be a very useful technique in representation
theory (e.g. [9]). We are interested in finding out how our «-localization functor
behaves with respect to this tensoring. We have

Theorem 3.1. If F is a finite dimensional g-module and A € o/, then 3 a canonical g-
module isomorphism g: D (F ® A)~F ® D,(A).

Proof. Any element ¢ of D (F ® A) is of the form
E=y "Qe,®a), n=0, ¢,eF, qeA.
Define l

&)=Y i(—l)’

i r=0

(r+n—1
r

Note. (i) The right hand side is a finite sum as y"e;=0 for r>0.
m
s

(it) The bionomial coefficient ( ) for m,seZ is defined by

1+x)"= i (m) x°,

s=0 \S

We have to show that g is well-defined.
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So let
E=y (L e®a)=y MY f;®b) fieF. bed
i J

ie. Y'Y e,®a)=y"(3 f;®b,). Consider
i Jj

(e (T veey e
i r=0
TE T e

ir r t=0

(Note: ("J;k)=0 for t>n+k>

=35 (2 e (TN () veerta)

i 1=0 \r=0
putting t+r=1.

Now,
(7))

e (=5 (0= 6)

(The last equality follows from (1+x)"**-(1+x) "=(1+x)* by comparing the

coefficients of x on both the sides.)

Thus,
1
sz Z (—1y (r+n )(V‘ﬁ'@yﬁnvrai)

i r=0
_Z Z ( ) ,Vei@yk#ai)

i =0
Y e®a)
=r(3./®b)

t+k—
n+kz Z __1 (+ )(ylfj®y~k—tbj)
(by an argument similar to one above).

Since F® D,(A) is U(n")-torsion free, we have prored that g is well-defined.
We next prove that g is a g-module homomorphism. For this observe the

following:
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() g(ze®a) Z Z —l)r( _1>(yrei®y_rai)

i r=0
=Y e,®a; as (r:l)zého.
(ii) Forany =y "(} e;®a;)eD, (F® A),

8- 9=8(y "L rei®a+e;®ya))

+
_Z Z(—l (r . )(yHlei®yinirai+yrei®y‘n+‘\rai)

i r=0

—y(Z Y (=1y ('H )(y’e,@y‘”“'a;))

i r=0

=yg(¢).

Nowletzeg, E=y~ "(Z e;®a;)e D, (F ® A) be arbitrary. Choose s = 1 such that y*z
=u-y" for some ueU(g). (Such s exists by Lemma 2.1.)
We have,
y'g(z-&)=g(y*z& by (ii) above
=gu-y"y "L e®ay))

—g(u(Y ;®ay)

=u(z e,®a;) by (i) above.
Also, l
y'z-g(Q)=uy"-g(&)
=u-g(y"ﬁ)=u-g(;e,-®a,-)

= u(z e;®ay).

Since F ® D,(A) is U(n~)-torsion-free, we have proved that g(z- &)=z g(¢)i.e. gis
a g-module homomorphism.
Next, define f: F® D, (A)— D, (F ® A) as follows:

o0

kit
[Ee@y may=yy (L (1) e ra)
i i r=0
where ¢ is such that y(F) =0 and k;’s are such that (k;— 1)t =n,— 1. As y'(F) =0, the
summation on r on the right hand side is upto t—1 only and in that case
kit—n,—rzk;t—n,—t+1=(k;—1)t—n,;+1=0 and so

k.t
Y ( ; )(y’el.@y""‘""’ai)eF@A.

r=0
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It is quite straight forward to show (using computations similar to those given
above) that f is well-defined and that f and g are inverses of each other. We omit the
details. Since g is a g-module homomorphism, so is f. This proves the theorem.

Remark. For the sake of completeness, we give the correct definition of the
bionomial coefficients. For m, re Z, define (T) by
m
(IT+x)m=Y (S> X5,

seZ
Then

(iv) (r:l):m(m—l)...(m—r+1) Vi1 meZ.

1...r

Using the identity (1 +x)"(1 +x)"=(1+x)"*" Vm, neZ, we get various identities

i ! -1 k k
between the bionomial coefficients eg. Y (—1)- (r+n ) (n+ ): (l) as
used above. r=0 4 -

Corollary 3.2. If M € # and F is a finite dimensional g-module then F ® M € .# again
and 3 a canonical g-module isomorphism g:

CFROM)~F® C,(M).

Proof. Consider the g-module isomorphism g: D, (F ® M)~ F ® D,(M). It isenough
to show that

F®C,(M)=K,
where K is the submodule
{¢e F®D,(M)|x, acts locally nilpotently on & ¥V ped*}.

Let {e,... e,} be a basis of F such that e, is of weight A,€ h*, the labelling being so

arranged that 4,— ;=) a;- f with ;20 = j <i.
Ped

Let (=) ¢,®@&;€eK and g e®™. Then x,¢=0 for t>0. So

Lot

0=y ¥ (
ij=0V
=e,®x,¢,+ ) e,®¢&  for suitable &;.

iz2

) xje@x; 1¢)
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Thus x|, ¢, =0. One can now proceed by induction on i and show that x,, acts locally
nilpotently on ¢;V,. Thus &,eC,(M) and (e F® C,(M). The implication
teF® C,(M)=¢(eK is even easier. This completes the proof of the corollary.
We are now in a position to extend the notion of completions in the following
set up (cf. [3, §3]). Let g, o, #, a be as before. Let m=g be a finite dimensional
ambient Lie algebra. Let o™ (respectively .#,") be the category of m-modules which
when considered as g-modules belong to ./ (respectively .#). We now have

Proposition 3.3. Let Ae.o/)" (respectively M e J)"), then D,(A)e ) (respectively
C,(M)e s

Proof. m is a finite dimensional g-module under the adjoint action so by Theorem
3.1, we have m® D,(4)~D_ (m ® A).

Consider the map m ® A — A4 given by the m-action. This is a g-module map and
so gives rise to a map D, (m® 4)— D, (A) by functoriallity of D,. Thus we have a
map m® D, (A)— D, (A). We take this to be the m-action on D,(A). It is easy to verify
that this is indeed a Lie algebra action. The statement about .#;" and the functor C,
follows similarly using Corollary 3.2.

Remark I. The idea of the proof of this proposition is essentially due to M.S.
Raghunathan.

Remark 2. The principal application of this ‘ambient’ setup is to the case when m
and g are complexifications of m, and g, respectively where m, is a real semisimple
Lie algebra and g, is its maximal compact subalgebra. Successive completions of
m-modules in #" with respect to simple compact roots give rise to Harish Chandra
m-modules and it is the central theme of Enright’s work ([3,4]).

We come to another application of Theorem 3.1 which brings out an interesting
(and somewhat mysterious) aspect of the structure of D,’s. First note that the Verma
module V, 4. (A€b*) (see [2] for an exposition) is in the category .#.

Proposition 3.4. Let V, ;. be the Verma module of highest weight Aeb* such that
AH)=/4,¢{—2, —3,...}. Then one has a non-split exact sequence

0- Vo ->D,(V, p+)— Vita, xa@*)_’o

where s, is the reflection with respect to o.and s (@) is the corresponding positive root
system.

Proof. We first note that the condition A(H,)¢ { —2, —3, ...} precisely means that
C.(V,0+)=V, ¢+. (We give a proof of this fact later on.) Therefore for ¢
=y""meD,(V, o+ \V; o+, X - EF0Vr=0.

Consider the g-module D,(V, +)/V, o+ let @ be the natural projection from
D,(V, 4+)ontoit. Let v, be a generator of V, 4. We claim that n(y~ ' v;) +0and it is
a highest weight vector with respect to s,(®*). Clearly y~'v, ¢V, 4. for weight-
considerations and so n(y~'-v,;)=*0.

Let ped™, ¢ +a. We have (see Proposition 2.5),

Xpy tvy=y R (x4 dyP X, A d X, )0, =0.

Also, y-n(y~'v,)=mn(v;)=0. This proves the above claim.
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We next prove that y~'v, generates D, (V, 4-). So let K be the g-module
generated by y~'v,. Clearly KoV, ,.. Next we prove by induction on r that
y~"v,eK. For r=1, it is clear. Let r=2. We have,

xy o=y yx == DH )= — (=D +1) y v,

As A,¢{—2,-3,...}, 4, +r+0Vr=2. Thus y "v,eK as y " Yv,eK by in-
duction hypothesis.
For a root @e®™, define I(¢p)=max{p+tae®}. For a monomial u,
t

k
=Yy, - Voo define l(ug)= ) l(p,). For an arbitrary ueU(a), define [(u)
i=1
=max [(u,), u, is a monomial occuring u.

By, convention, [(0)=0.

We prove by induction on /(u) that y~"uv, e K Yn=0. If [(u)=0, then yu=uy
and y "uv,=u-y "v,eK. Let l(u)=1. Given n=1, 3s=1 such that y*u=uy*
+u, y" with l(u,)<I(u). (This is really Lemma 2.1; we keep track of the various
terms occuring the expression on the right hand side of it.) Further y*u=uy*+u, y"
=("""u+u,+u,)y" with l(u,)<l(u). Souy "v, =y *(y* "u—4u,+u,)v,=y "uv,
+y *(uy+u,)v,. By induction, y~*(u,+u,)v,eK. Also u-y "v,eK and so
y~"u-v, € K. This proves that K =D (V, ,.). Also, as the weight space correspond-
ing to weight 4 + o is one-dimensional and contains generatorof D,(V; 4 ), it is clear
that D,(V, 4+) is indecomposable.

Now D,(V, +)/V,. o+ is a highest weight module with respect to s,(®*) and is
generated by n(y~ ' v,). We now claim that it is actually isomorphic to Vs @)
This is achieved by computing the firmal character of D,(V, 4+)/V, o+ and showing
it to be equal to that of V; _,  4-,. Consider r,=h®¢*@ g~ *; r, is reductive of
semisimple rank 1.

IfA;, ={v;,yv,,...},then 4, isar,-highest weight module of highest weight /,.

Also, V, - =Um™ —{g7*})®4, as r,-modules; U~ —{g™*}) is a 1,-
module under adjoint action and one knows that U(n™ —{g "}~ @F, Fs are
finite dimensional r,-modules.

Thus, V, 4+ ~ @FI®A ,, as r-modules. (Note that A,¢{-2, —3,...} im-

n
mediately implies that 4, _is complete with respect to o and as C, behaves well with
finite dimensional tensoring (Corollary 3.2) and direct sums, V, . is complete as
well.)

The functor D, commutes finite dimensional tensoring (Theorem 3.1) and so

D,(V, 0+) =~ @D, (F;®A,,)~ @F ® D,(4;,)

Du(’l i

Also, V; ¢ 2D F,®4,,

Since all the maps are canonical,

D,(V,0)/V, 0+ ~DF,®D,(4,,)/A4,, asr,-modules

=Um™ —{g7"N®(D,(4,,)/4;,)
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Consider the formal characters.

ch(Dy(V;,0:)/ Vs 0+)=ch(Un™ —{g~*})) - ch(D,(4,,)/4;,)

1
- -ch(D,(4,)/A,).
1—e? o

Wg+( ! )

Now D,(4;,)/A4,, is a r,-highest weight modules generated by n(y~'v,) (as seen
before).  Also, w(xy "v,)=0=n(—r(r+1+4) -y "*Vp,)=0=r=0 as
y "V, ¢ A, forr=1.ThusD,(A4;, )/A, ~Vermamodule for r, with respect to the
positive root system {—a).

Hence
chD,(4,)/4, =*+*+e* 2%+ .
el-mz
:(l_ea).
Thus
h y 1 e/l+a
D V + + )= :

ch(D,(V; 0)/Vi0+) 1—[ (1—e=® (1—e%

pedt

oFa

el+a
Yesg(@)

:Ch(VlJra,s,((b*))‘
This shows that D(V, 4+)/V, ¢+ >V, .. @+) Thus one has an exact sequence

— 0.

0=V, + > D,(V, ¢+)—"— Vit asa@®)

This is non-split as D,(V, 4+) is indecomposable. This concludes the proof of the
proposition.

General Remarks on §2, 3

Remark 1. The explicit nature of D (M)s and C,(M)’s enables as to simplify the
proofs of many propositions in [3].

Remark 2. The construction of D,’s can be carried out in the setup of the infinite-
dimensional or G.C.M. or Kic-Moody Lie algebras (cf. [6] for an exposition of
these Lie algebras.) An analogue or Theorem 3.1 with the so-called ‘standard’-
modules in place of finite dimensional modules is true. (Note that all we need is
the fact that y acts locally nilpotently.) We plan to take up this case in a forth-
coming paper.

§4. On a Problem of Enright

We have so far considered the completions with respect to a fixed simple root «.
One now considers successive completions with respect to several simple roots.
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Let weW, the Weyl group of g. Take a reduced expression w=s, ...s, and
Me4. One can then consider C, (C,,...(C, (M))...)). The problem posed by
Enright is whether this module (¢.#) depends only on w. ie. Is the following

true:
If w=s, .5, =5, ... S, (%)

are two reduced expressions then 3 a g-module isomorphism f:
Co (G (M) )= Cp (Cy, ... (Cp (M) ..)) such that f/M is identity. (It is not
difficult to prove (e.g. [3, §4]) that Verma modules and their tensor products
with finite dimensional modules satisfy (x).)

Using the explicit construction of completions as given in §2, we prove that
for any Me 4 (%) is true. We first have the following reduction:

Proposition 4.1. If () holds for all Me.# and all werank-2 subgroups of W then
(%) holds for all M and all weW.

Proof. We proceed by induction of I(w). If I(w)=1, there is nothing to prove.
Let w=s, ...s,,=S; ...5;, be two reduced expressions (k=2). Let J
={o,f,}. (We may assume that o, +pf,). Consider the decomposition W
=W, W’ (cf. [1, §3]) where W, is the rank-2 subgroup generated by J and W’ is
the set of minimal (right) coset representatives of W. Let w=w,; -0 be the
corresponding decomposition. Also, one has s, w=wj}-g; s; w=w/-0o for some
wy, wjeW, (Note the same ge W’ occurs for w, s, w and s; w.) Let wy=s, ...s
Wy=S$; ...5; and o =s, ..., be reduced expressions (r;,d;€J). Then we have,

IR ]

l‘p’

Suy W=5,, 0. 85, =5, ... S, S, ...8, and (s, w)<l(w).

Ak ri

Hence be induction hypothesis,

Cor(Cyy o (Coue(M) )= C, (C, (.o (C, (Cyy oo (Cy (M) ...))
so that

C, (G, (Cp (M) . )= C, (C, (... C, (Cy, ... (... Cy (M) ).
Working with s; w, we get similarly,

Cp, (Cpy e Cp (M) )= Cp (Cs, ... Cy (Cy, ... Cp (M) .0)).

Let N=C, (...(Cy,(M)...))ef. Now w,erank-2 subgroup W, and has reduced
expressions:

Wy=S5, Sy, - Sy, =5p, S5, 00 S5

and so by hypothesis
Co(C,y - (C, (N)) . )= Cy (Cy, ... (C5, (N)) )

This completes the induction hypothesis and hence the proposition is proved.
We now have:
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Theorem 4.2. For any weW, Me.# and two reduced expressions
W=S, S, =S Spe G (Gl (Cl (M) )= Cp (- (Cp (M) )
in such a way that it induces identify on M.

Proof. By Proposition 4.1, one can assume that werank-2 subgroup of W; say
W, where J ={o, f} = 4.
We have to show that

C(Cy...(M))=Cy(C,...(M))
ptimes ptimes
where pe{2, 3, 4, 6}.
We will show that K=C,(C,...(M)) is complete with respect to f.
———

ptimes
Assuming this, it is easy to complete the proof of the theorem as follows. As

Co(Cyo. (M) C,(Cy ... (M) =K

p— ltimes ptimes
we get a map Cy(C, ... (M) Cy4(K)=K. Similarly we have a map in the other
N AR
ptimes

direction and this clearly proves the isomorphism required.

To show that K is complete with respect to f, we proceed by ‘first
principles’.  Let ¢eK[—s—2]x; s20. Then &=y, “y;¢  where
¢ eC (C,, .(M)) and the above is a minimal expression. We may assume that

p- 2umes
£, is a weight vector (of weight A,eb*) and that a, a,+0 (otherwise there is
nothing to prove.) We have, —s—2=4,(H)+2a,+a,-o(Hy). Since ¢ is an x;-
invariant and [x;,y,]=0, y; “*¢, is also an xg-invariant. Hence by sl,-theory
and minimality of a,, we have:

x5:&; =0 and a,—1=41,(Hy+2a,.

Thus —s—2 a,—1+a;-a(Hp)or —(s+1)=a, a(Hy)+a,. We have therefore to
show that E=yg*Ma+ 4. ¢ which is an element of D(K) to start with is actually
in K. (This will show that K is complete with respect to f.) We now claim

E=yy i ceD, (D, .. (M)). ()

ptimes

If we grant this claim then it is an easy matter to show that & is actually in
c,(Cc,... = i cLet E=ybryba  y-boyy g
a(l. s---(M))=K. For this, we proceed as follows: Let {=y, "y, ¥,
ptimes
minimal expression with me M. (Note that this is givgn by (x*).) Here. r=gif p
even and r=u« if p odd. Let p be even i.e. r=f. Since ¢ is an x-invariant and the
above is a minimal expression, we get that Vg ’rm is an xg-invariant and so is in
Cy(M). Next, x, acts mlpotently on ¢ «md so on &-([x,, y3]=0). Hence x, acts
nilpotently on yhr-2... )b E=y;tr-rystrm. Thus y, "1y, ’»meC, (Cﬁ(M))
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(Note that by Proposition 2.5, one need consider the action of x, only.) Proceed-
ing in this way, we prove that &e C.(Cy...(M)) =K.
T

The proof for p odd is similar.

We are therefore reduced to proving (x*). Unfortunately we are now forced
to proceed case by case. If (a, f) =0 (i.e. J is of type A, x A,) (x*) is obvious. The
proofs in the remaining cases are similar to each other. We give here the
proof of (xx), only in the most complicated case namely when J is of type G,.

Let o be the shorter root ie a(Hyp)=-1, B(H,)=-3. Let ¢
=y, Vg 2y, @ y;“y, “m, a minimal expression with riie Cy(M) and a,>0Vi
(otherwise there is nothing to prove). Then

A= aya(Hpg)+az
¢ Vg ¢

—ay+az

—a;

Ya

—ay

Vel =y TRy Y Ry By y, S

The idea is to use the following identity in U(n~): For p, geN u {0},

3 2 3 2 3 2 2 3
Vpya gy Py =y VR T T vy v

(Identities of this type were first observed by D.N. Verma [8]; They can be
proved easily by using inclusions in Verma modules and the Poincaré-Birkoff-
Witt theorem.)

However in our case, the a,’s may not be in the form required in the identity
and so we change them suitably so that the new ones are in that form. The
remainder of the proof shows how this can be done systematically step by step.

Let t>0 be such that x; =0 (such ¢ exists as (e C,(Cy ... (M))).

6times

By Theorem 2.6, we have
tza,—(A(H)—3a,+2a,)=j,21 ()
and
X Ve "y &, =0.
Write
E=yguray motioy-iy e
Let

vy V5 ¢y =y1;b2§2 with  £,eC,(Cy...(M))
N —r

4times

of weight A,=A1,+(a,—b,)p—(t—j,)o; the above is taken to be a minimal
expression.
As yi VpEi=y b2£, is an xg-invariant, we have

x36,=0 and A,(Hp)+2b,=b,—1
But 4,(Hg)+2b,=4,(Hp)+2a,+(t—j,)=a,—1+(t—j;). Thus

by=a,+(t—j,) ... (i)
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So _ ‘
é:yﬂ‘ﬂﬁrﬂzy;axA(I—Jl)yﬁ—a2~(l—h)§2 (I)

Note also that x} ¢, =0.

We now proceed with ¢, exactly in the same way as we did with &. We will
see that the form required in the identity emerges by itself. Let &,=y, "¢, a
minimal expression with &,e C;(C,(Cy(M))) of weight 13 =4,—b,o.

Now by Theorem 2.6,

t2by—2,(H)=j,21 and x,), 72¢,=0 .. (iii)
We have,
'12:}“1_(1_1'1)0(_“—'].1)/3

Ja=by—A(H)—(t—],)
=by+a,—3a,+j,—(t—j,).

SO

Thus

by+(t—j)=3a,—a, +2(t—j,) .. (V)
Write

ézzy;bsf(f*jz)yysz)és

:ya- 3ax+ar—2( -"jl)yf*.i2£3 (II)

Let y, /2¢y=y; "*&,, a minimal expression with

C4€C,(Ch(M)) of weight A, =A;—(t—j,)a—b,p ... (III)
Just as in case of determining b,, it can be proved that

by=2a,—a,+(t—j,) and x,&,=0 e (V)

Let £, =y, "sr,, a minimal expression with i€ Cy(M). Once again, by Theo-
rem 2.5,

t2bs—24(H)=j,21.

Using the expression for J, in terms of A, and the relations (i) to (v), we get:
Ja=bs+2a,—3a,+j,

Thus

—(bs+(t—ji)=2a,—3a,—(t—j,)
So

E ooy bs—(t=j3) t—Ja g 1,201 - 3az—({ - j1) 4
Ea=y;bs ( Js)ya Jsml_yaﬂl az Jl)m2 .. (IV)

with theCB(M),
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Using relations (I) to (IV), we get

£ y,—ar+ —ay—(t—j1) y,—a2—(t—j1) y,— 3az+ay— 2(t— j1)
f—y,;a‘ az.Va ay—( Jl)yﬂ 2 J1 Vi az+ay J1

‘J’E Zaz+u1-(!—j1)y~3az+ 2a1—(t—j1)

A
a m2

=y;y3u+z’y§u+vy3u+Zuy;+uyznc,2’
where
u=-—a,+a, and v=2a,—3a,—(t—j,) . (V)

As mentioned earlier. we have, for any p, geN U {0} and ne C4(M),

3 2 3 2 3 2q,,2 3
/RS RN S BN B 0 S AR VLR LA 1Y 2

However, we may not be able to use this directly in (V) as some of the exponents
may be negative. 4 moment’s thought will show that the above identity holds
even if some of the exponents are negative. (The point is that the signs of {p,3p
+gq,...} form connected blocks i.e. there can’t be a positive sign inbetween two
negative ones.) Thus

5=y;yz+uy3u+ 20y5u+vy:u+vy;rﬁ2

and i, being in Cy(M) is of the form y;"m,, m,e M. This shows that (+#) is true
in this case. A similar proof works when « is the longer root. This proves (xx)
completely in case of G,.

As mentioned earlier, we omit the proofs of (xx) in cases where J is of type
A, or B,. (Needless to say, these proofs are much simpler than the one given
above.)

This completes the proof of Theorem 4.2.
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