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NOTES AND EXERCISES: FINITELY GENERATED ABELIAN GROUPS

SPLITTING OF SHORT EXACT SEQUENCES

Consider a short exact sequence of A-modules (where A is a ring with identity):

(1) 0ÑM 1 i
ÝÑM

p
ÝÑM2

Ñ 0

(1) The following conditions on (1) are equivalent:
(a) There is a homomorphism j : M ÑM 1 such that j ˝ i is the identity on M 1.
(b) There is a homomorphism q : M2 ÑM such that p˝q is the identity on M2.
(c) There is a submodule N of M such that M “ iM 1 ‘N .

The short exact sequence is split if the above conditions are satisfied.

(2) The sequence (1) splits if M2 is free.

(3) (Schanuel’s Lemma) Let 0 Ñ K Ñ P Ñ M Ñ 0 and 0 Ñ K 1 Ñ P 1 Ñ M Ñ 0
be two short exact sequences, where P and P 1 are free. Then K ‘ P 1 » P ‘K 1.
(Put X “ tpp, p1q P P ‘ P 1 |πppq “ π1pp1qu, where π and π1 denote respectively the
surjections to M from P and P 1. The projection (to the first co-ordinate) from X Ñ P

is surjective, and its kernel is isomorphic to K 1, so we have a short exact sequence
0 Ñ K 1 Ñ X Ñ P Ñ 0, which moreover splits since P is free. Thus X » P ‘ K 1. A
similar argument with the second projection shows that X » K ‘ P 1.)

DIAGRAM CHASING

(1) (SNAKE LEMMA)

(2) (FIVE LEMMA) Consider the following commutative diagram of maps of mod-
ules:

CHAIN CONDITIONS: NOETHERIAN AND ARTINIAN MODULES [s:noethart]

(1) The following conditions are equivalent for a module M :
‚ Every ascending chain M1 Ď M2 Ď M3 Ď . . . of submodules stabilises (that

is, Mj “Mj`1 for all j " 0).
‚ Every non-empty collection of submodules admits a maximal element (with

respect to inclusion).
A module satisfying these conditions is called Noetherian.

(2) A module M is Noetherian if and only if every submodule is finitely generated.
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(3) The following conditions are equivalent for a module M :
‚ Every descending chain M1 Ě M2 Ě M3 Ě . . . of submodules stabilises

(that is, Mj “Mj`1 for all j " 0).
‚ Every non-empty collection of submodules admits a minimal element (with

respect to inclusion).
A module satisfying these conditions is called Artinian.

(4) Submodules and quotients of Noetherian (respectively, Artinian) modules are
Noetherian (respectively, Artinian).

(5) Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be a short exact sequence. Then M is Noetherian
(respectively, Artinian) if and only if M 1 and M2 are Noetherian (respectively,
Artinian).

(6) A ring A is (left) Noetherian (respectively Artinian) if it is so as a (left) module
over itself. A quotient of a Noetherian (respectively, Artinian) ring is Noether-
ian (respectively, Artinian).

(7) A finitely generated module over a Noetherian (respectively, Artinian) ring is
Noetherian (respectively, Artinian).

FREE MODULES AND FINITELY GENERATED MODULES

Let A be any ring (with identity), not necessarily commutative, and let M be an A-
module (left module).

(1) If M is finitely generated and it is free, then it is freely generated by a finite
number of elements.

(2) Suppose that Ar » As with r finite. Then (a) s is finite; (b) if A is commutative,
r “ s.

PRESENTATION OF MODULES

(1) Let ϕ : Am Ñ An be an A-linear map between free modules Am and An. We can
represent by a mˆ n matrix M with coefficients in A as follows.

(2) A module N is finitely presented if there is an exact sequence Am Ñ Am Ñ

M Ñ 0 (here Am and An are finitely generated free modules). Suppose that
ϕ : Ap Ñ M is a surjection from a finitely generated free module to a finitely
presented module M . Then the kernel of ϕ is finitely generated. (Use Schanuel’s
Lemma.)

(3) A finitely generated module over a Noetherian ring is finitely presented.

TORSION IN FINITELY GENERATED ABELIAN GROUPS

(1) Let A be an integral domain (commutative ring having identity, with 1 ‰ 0
and no non-zero zero divisors). Let M be an A-module. The torsion submodule
of M , denoted TM , is defined by TM :“ tm P M | am “ 0 for some 0 ‰ a P Au.
We say that M is torsion-free if TM “ 0.
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(a) The image of the torsion submodule under a module homomorphism lies
in the torsion submodule.

(b) If 0ÑM 1 ÑM ÑM2 is exact, then 0Ñ TM 1 Ñ TM Ñ TM2 is exact.
(c) M{TM is torsion-free. And T pTMq “ TM .

(2) Suppose that a1, a2, . . . , an are intgers that together generate the unit ideal.
Then there is nˆ n with integer entries whose first row is a1, . . . , an and which
is invertible over the integers.

(3) A finitely generated torsion-free abelian group is free. (Let x1, . . . , xm generate a
torsion-free abelian group M , with m being chosen to be the least possible. We claim
that x1, . . . , xm are linearly independent (which is enough to show that M is free). Let
a1x1 ` . . . ` amxm “ 0 be a non trivial linear dependence relation among the x1, . . . ,
xm. Using the fact that M is torsion-free, by factoring out the common factor in a1, . . . ,
am, we may assume that the a1, . . . , am generate the unit ideal. By item 2 above, there
exists an invertible m ˆm integer matrix Z whose first row a1, . . . , am. Put y “ Zx,
where x is the m ˆ 1 matrix with entry xi in row i. Letting yi be the element in row i

of y, we see that y1 “ 0 on the one hand, and y1, . . . , ym generate M on the other. This
contradicts the assumption of minimality of m.)

(4) Any subgroup of a finitely generated free abelian group is free.

(5) The additive group Q of rational numbers is torsion-free but not free. Indeed,
any two rational numbers are linearly dependent over the integers.

(6) Let m be the maximal ideal px, yq in the polynomial ring Crx, ys in two variables
over the complexes. Show that m is torsion free but not free.

(7) An abelian group M is called torsion if it equals its torsion submodule, that is,
if M “ TM . A finitely generated abelian group which is torsion is finite.

PRIMARY DECOMPOSITION OF FINITE ABELIAN GROUPS

Let N be a finite abelian group. Then the annihilator Ann pNq :“ ta P Z | aN “ 0u of N
is a non-zero ideal. Fix notation as follows:

‚ d is the positive integer such that Ann pNq “ dZ
‚ d “ pr11 ¨ ¨ ¨ p

rk
k is the unique factorization of d as a product of primes.

‚ for 1 ď i ď k, let ei be an integer such that ei ” 1 mod prii and ei ” 0 mod p
rj
j for

j ‰ i. We have: 1 ” e1 ` ¨ ¨ ¨ ` ek mod d, eiej ” 0 mod d (for 1 ď i ‰ j ď k),
and e2i ” ei mod d (for 1 ď i ď k).

‚ Ni :“ eiN
‚ For x an integer, let p0 :N xq :“ tm P N |xm “ 0u.

Show the following:
(1) N “ N1 ‘ ¨ ¨ ¨ ‘Nk.
(2) The stable value of p0 :N piq Ď p0 :N p2i q Ď . . . Ď p0 :N p`iq Ď . . . is reached at

p0 :N pr
i

i q and equals Ni.
We call Ni the pi-primary component of N . It is the unique Sylow pi-subgroup of N .
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Thus the primary decomposition of a finite abelian group N coincides with what we
get by applying to N the structure theorem of finite nilpotent groups, namely, that
they are direct products of their Sylow subgroups.

THE STRUCTURE OF PRIMARY COMPONENTS OF A FINITE ABELIAN GROUP

Let A :“ Z{pkZ, where p is a prime.
(1) Let ϕ : M Ñ N be an A-linear map between finitely generated A-modules M

and N .
(a) ϕ maps pjM to pjN , and so ϕ induces A-module maps ϕj : pj´1M{pjM Ñ

pj´1N{pjN .
(b) If the ϕj are isomorphisms for all j ě 1, then so is ϕ.

(2) Let M be a finitely generated A-module. Let sj :“ dim pj´1M{pjM (as a Z{pZ-
vector space). Note that sj “ 0 for j ą k (since pj´1M “ 0 in that case).
(a) s1 ě s2 ě . . .. Indeed, if m1, . . . , mr are elements of M such that (the

images of) pj´1m1, . . . , pj´1mr in pj´1M{pjM form a basis, then, for i ď j,
(the images of) pi´1m1, . . . , pi´1mr in pi´1M{piM are linearly independent.

(b) There exist elements m1, . . . , ms1 in M such that, for every j ě 1:
(i) (the images of) pj´1m1, . . . , pj´1msj in pj´1M{pjM form a basis.

(ii) pj´1msj`1 “ . . . “ pj´1ms1 “ 0.

(3) Put tk “ sk ´ sk`1 “ sk, tk´1 “ sk´1 ´ sk, . . . t1 “ s1 ´ s2; and

P :“

ˆ

Z
pkZ

˙tk

ˆ

ˆ

Z
pk´1Z

˙tk´1

ˆ ¨ ¨ ¨ ˆ

ˆ

Z
p1Z

˙t1

With M being as in item (2), we have an A-linear map ϕ : P Ñ M defined as
follows: the standard basis vector ei maps to mi for 1 ď i ď s1. This map is an
isomorphism (using item (1) above).

SUMMARY: STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS

We now summarise the results of the previous sections. Let M be a finitely generated
abelian group. We let TM be the torsion submodule of M and consider the short
exact sequence 0 Ñ TM Ñ M Ñ M{TM Ñ 0. Since Z is a Noetherian ring, M is a
Noetherian module, and in particular TM and M{TM are finitely generated.

Since M{TM is finitely generated and torsion-free, it is free (item (3) in the sec-
tion on torsion in finitely generated modules). So the above short exact sequence
splits (item (2) in the section on Splitting of Short Exact Sequences), which means (by
item (1) of the same section) that M “ TM ‘ K where K is a free submodule of M
isomorphic to M{TM . There is a unique non-negative integer r such that M{TM » Zr

(see the section on Free Modules and Finitely Geneated Modules). We call r the rank
of M . The torsion subgroup TM of M is finite (item (7) of the section on Torsion in
Finitely Generated Abelian Groups).

By the results above on Primary Decomposition and the Structure of Primary Com-
ponents, it follows that TM is uniquely the product of cyclic subgroups of prime power
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orders. From this we can deduce the existence of a unique sequence d1|d2| ¨ ¨ ¨ |ds of in-
tegers ą 1 such that TM is the product of the cyclic groups of order d1, . . . , ds.

PRINCIPAL IDEAL RINGS [s:pir]
Let A is commutative local ring with identity. (In particular A ‰ 0.) Suppose that
every ideal of A is principal. The following notation remains fixed:

‚ m is the unique maximal ideal of A
‚ x an element of A such that m “ Ax
‚ I “ Xrě1m

r

‚ M is an A-module
‚ TM :“ Yrě0p0 :M xrq

(1) The items below explore properties of the ideals of A.
(a) If p is a prime ideal, then p is either m or 0.
(b) If mr “ mr`1, then mr “ 0.
(c) An element a in A belongs to mrzmr`1 (for some integer r ě 0) if and only

if mr ‰ 0 and a “ uxr for some unit u in A.
(d) Suppose that mr ‰ 0 for all positive integers r. Then I is a prime ideal.
(e) I “ 0.
(f) Every non-zero ideal of A is of the form mr for some integer r ě 0.
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