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POSETS AND ZORN’S LEMMA

(1) (Some definitions about posets) A partially ordered set, or poset for short, is a
set X with a relation ď that is: (a) reflexive: x ď x; (b) anti-symmetric: x ď y
and y ď x implies x “ y; and (c) transitive: x ď y and y ď z implies x ď z.

A fundamental example of a poset is the power set of a set with inclusion
between subsets being the relation.

Two elements x and y of a poset are comparable if either x ď y or y ď x; they
are incomparable if they are not comparable. A chain, or totally ordered set,
of a poset is a subset any two elements of which are comparable. A subset in
which no two elements are comparable is an anti-chain.

An element x is said to be an upper bound of a subset of a poset X if s ď x
for every s in S. The notion of a lower bound is similarly defined.

(2) A map f from a poset pX,ďq to a poset pX 1,ďq is order preserving if fpxq ď fpyq
whenever x ď y.
(a) Define the notion of an isomorphism of posets. (Note that the inverse of a

bijective order preserving map need not be order preserving.)
(b) Determine (as groups) the automorphisms of the following posets: (i) the

power set of rns; (ii) the set Z of integers; (iii) the set N of natural numbers.

(3) (Amusement) What is the maximal size of an anti-chain in the power set
of rns :“ t1, 2, . . . , nu? You should guess the answer yourself (which is not so
hard) and try to prove it (which may be harder) before looking at the footnote,
which gives a proof from the Book.1

1Note that the set of subsets of rns of a given cardinality k form an anti-chain. Choosing k “ tn{2u,
we see that there is an anti-chain of cardinality

`

n
tn{2u

˘

. We claim that no anti-chain can have larger
cardinality. Towards a proof of this, we consider, perhaps counter intuitively at first sight, maximal
chains in our poset and their properties. Let M denote the set of all maximal chains, and, for x in
the poset, Mx the set of maximal chains containing x. The crucial observation linking anti-chains to
maximal chains is this: Mx and My are disjoint if x and y are incomparable; thus, for an anti-chain A,
the sets Ma, a P A, form a family of pairwise disjoint subsets of M . (Only the fact that the elements
of M are chains is used here. That they happen to be maximal is not yet relevant but will soon be.)

Let us now consider the sizes of M and Mx:
(a) Every maximal chain has n` 1 elements, and there are n! maximal chains (thus |M | “ n!).
(b) If x has cardinality k, then Mx has cardinality k!pn´ kq!. Thus, the minimal possible cardinality

of Mx is m :“ tn{2u!pn´ tn{2uq!.
We can now finish the proof. Let A be an anti-chain. Given that Ma, a P A, are pairwise disjoint, we

have
ř

aPA |Ma| ď |M | “ n!. On the other hand, since m ď |Ma| for all a, we have |A|m ď
ř

aPA |Ma|.
Putting the two inequalities together, we see that |A| ď n!{m “

`

n
tn{2u

˘

. l
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(4) (Zorn’s lemma and applications) The lemma says: If every chain of a non-empty
poset admits an upper bound, then the poset admits maximal elements. We will
accept this at face value and apply it.2

(a) Every vector space has a basis. (Use Zorn’s lemma to conclude that there is a
maximal linearly independent set. Any such set is a basis.)

(b) Let S be a subset of a ring A (not necessarily with identity). If there is a
left (respectively right, two-sided) ideal of A not meeting S, then A admits
left ideals (respectively right, two-sided) that are maximal with respect to
not meeting S.

(c) Let A be a non-zero ring (with identity). Put S “ t1u and invoke the
previous item to conclude that the poset of proper left (respectively right,
two-sided) ideals of A admits maximal elements.

(5) Let A ‰ t0u be an abelian group. We can turn it into a pseudo-ring (that is,
a ring without necessarily having a multiplicative identity) by setting ab “ 0
for all a, b in A. Now consider the abelian group Q{Z made into a pseudo-ring
as above. Any subgroup is an ideal. Show that Q{Z does not admit maximal
proper subgroups, and hence that the pseudo-ring Q{Z does not admit maximal
(proper) ideals. (Let M be a proper subgroup and let q be in Z such that 1{q R M (if
p{q R M , then 1{q R M ). Show that Z{q `M does not contain 1{q2 (observe that if
1{q2 “ p{q `m for m in M , then p1` pqqm “ p1´ p2q2q{q2 “ 1{q2 belongs to M , which
means 1{q belongs to M , a contradiction). Thus M Ĺ Z{q `M Ĺ Z{q2 `M .)

(6) (Embedding a pseudo-ring as an ideal of a ring) Let A be a pseudo-ring (that
is, a ring perhaps without multiplicative identity). We now construct a ring
denoted Z ˙ A as follows: it is Z ‘ A as an abelian group with multiplication
defined by:

pm, aq pn, bq :“ pmn, ab` na`mbq

The element p1, 0q is the multiplicatie identity in this ring. The map a ÞÑ pa, 0q
is a homomorphism of pseudo-rings. It is an injection and its image tp0, aq | a P
Au is a two-sided ideal in Z˙ A.

1. EXAMPLES OF RINGS (ALWAYS WITH IDENTITY)

The ambience of a ring (with identity), denoted A, is assumed. Ring homomorphisms
are assumed to be unital, meaning that the image of the multiplicative identity under
a ring homomorphism is the multiplicative identity.

(1) The zero-ring: t0u. In certain assertions about rings, this has to be excluded
explicitly, as for instance in: every non-zero ring admits a two-sided maximal
ideal.

2Timothy Gowers: “If you are building a mathematical object in stages and find that (i) you have
not finished even after infinitely many stages, and (ii) there seems to be nothing to stop you continuing
to build, then Zorn’s lemma may well be able to help you.”
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(2) The ring Z of integers: There is a unique ring homomorphism from Z to any
given ring. Its image lands in the centre (which by definition comprises all the
elements of A that commute with every element of A).

(3) Rings of functions: Functions, say real valued, on any set form a ring: addi-
tion and multiplication are defined pointwise. The commutativity of the mul-
tiplication of real numbers implies that this ring is commutative.

We could also look at restricted classes of functions: e.g., the real valued
continuous functions on a topological space form a ring.

(4) Subrings; Invariant Rings: We insist that a subring contain the multiplica-
tive identity of A (to be considered a subring of A). The centre of a ring (defined
in one of the items above) is a subring.

Suppose that a group acts on a ring by automorphisms. Then the elements
of the ring that are left invariant by every element of the group form a subring,
called the invariant ring. A basic example of such a situation is provided by
the symmetric group Sn on n letters acting on the polynomial ring Crx1, . . . , xns
by permuting the variables.

(5) Quotient rings: Given a two-sided ideal I of A, the space A{I of cosets of I in-
herits a ring structure from that of A. The quotient ring A{I has the following
universal property: any ring homomorphism from A whose kernel contains I
uniquely factors through the canonical epimorphism AÑ A{I.

(6) Polynomial rings
(7) Endomorphisms of abelian groups
(8) Endomorphisms of vector spaces (matrix rings)
(9) Rings of fractions

(10) Group rings: Here the product is convolution. See item (2) in the next section.

(11) Direct product of rings
(12) Inverse Limits of Rings; Completions
(13) The opposite of a ring.

(14) Commutants: Let B be a subset of the ring A and let C be the commutant
inside of B, that is, the set of all elements of A that commute with all elements
of B. Any such commutant is a subring of A (no matter what subset B is). The
commutant of the commutant of B is called the double commutant of B.

The double commutant of B contains the subring generated by B but could
in general be strictly larger, as for instance in the following example. Let A
be the ring MnpCq of n ˆ n complex matrices (with respect to the usual addi-
tion and multiplication of matrices), and B be the subring of upper triangular
matrices. The commutant of B is the subring of scalar matrices and its double
commutant is A.

3



As another example, consider the subring B of MnpCq consisting of all diag-
onal matrices. The commutant of B is itself.

PROBLEMS ABOUT (NOT NECESSARILY COMMUTATIVE) RINGS

As before, A denotes a ring (with identity, not necessarily commutative).

(1) Let x1, . . . , xn be elements of A. For S a subset of rns :“ t1, 2, . . . , nu, put
xS :“

ř

sPS xs. Show that
ÿ

SĎrns

p´1q|S|xnS “ p´1q
n
ÿ

σPSn

xσp1q ¨ ¨ ¨ xσpnq

(Observe that xS “
ř

pi1,...,inqPSn xi1 ¨ ¨ ¨xin . Thus, for a fixed pi1, . . . , inq in rnsn, the
term xi1 ¨ ¨ ¨xin occurs in xS (with coefficient 1) if and only if S contains the set I :“

ti1, . . . , inu (with repetitions removed). Finally, we observe that, for a fixed subset I

of rns,
ř

SĚIp´1q
|S| vanishes except for I “ rns in which case it is p´1qn.)

(2) Consider continuous compactly supported real valued functions on the real
line. The convolution product, defined by pfgqpxq :“

ş

R fpx ´ tqgptqdt, endows
this set of functions with the structure of a (commutative) pseudo-ring, that
is, a ring without identity. The delta function supported at the identity (with
integral one) would morally be the multiplicative identity but this does not
quite belong to our set of functions.

(3) Let V be a finite dimensional vector space over a field k. Let E be the ring of
k-linear endomorphisms of V . (The ring E is isomorphic to the ring MdimV pkq of
dimV ˆ dimV matrices with entries over k, although this isomorphism is not
canonical, depending as it does on a choice of basis of V .)
(a) For a subspace U of V , put

`U :“ tf P E | kerF Ě Uu and ρU :“ tf P E | fpV q Ď Uu

Observe that `U is a left ideal and ρU is a right ideal.
(b) If U Ď U 1 then `U Ě `U 1 and ρU Ď ρU 1.
(c) `U “ Ef for any f P E with ker f “ U , and ρU “ fE with any f P E with

Im f “ U .
(d) Every left ideal ` is of the form `U for some subspace U . In fact, we can

take U to be XfP` ker f . (The goal is to prove that ` “ `U . It is evident from
the definition of `U that ` Ď `U . For the other inclusion, it suffices to show, by
item (3c) above, that there is an f in ` with ker f “ U . Choose f P ` such that
ker f is minimal (with respect to inclusion). We have ker f Ě U . We claim that
ker f “ U . Suppose not. Choose v P ker fzU and let g P ` such that gv ‰ 0.
Observe that Im f Ĺ V (since ker f is non-trivial) and so there exists y P E such
that ypgpvqq ‰0 and Im y X Im f “ 0. The endomorphism f ` yg belongs to `,
and ker f ` gv Ĺ ker f (since v P ker f but pf ` ygqpvq ‰ 0). This contradicts the
minimality of ker f . l)

(e) Every right ideal is of the form ρU for some subspace U .
4



(f) If ` is a non-zero left ideal, given any element v of V , there exists f in `
such that v P Im f . If ρ is a non-zero right ideal, given any element v of V ,
there exists f in ρ such that fpvq ‰ 0.

(g) Suppose that I is a non-zero two-sided ideal. Since I is a non-zero right
ideal, it follows, from the previous item, that XfPI ker f “ 0. Since I is a
left ideal, we have I “ `0 “ E (by item (3d)). This proves that E is a simple
ring in case V ‰ 0 (that is, it admits exactly two two-sided ideals, namely
0 and itself).

(4) Let V and E be as in item (3) above, except that we now assume V to be infinite
dimensional. Then E is not simple: the endomorphisms of finite rank form a
two-sided ideal (which is neither 0 nor the whole of E).

COMMUTATIVE RINGS (ALWAYS WITH IDENTITY)

The ambience of a commutative ring (with identity), denoted A, is assumed. Ring ho-
momorphisms are assumed to be unital, meaning that the image of the multiplicative
identity under a ring homomorphism is the multiplicative identity.

(1) Let I be an ideal and A{I the quotient ring. Every ideal of A{I is of the form
J{I for a unique ideal J of A that contains I. This sets up an order preserving
bijection between the poset of ideals of A{I and that of the ideals of A that
contain I.

(2) A subset S is a multiplicative set if it is closed under multiplication (that is,
xy P S for x P S and y P S) and contains 1.
(a) The product ST :“ tst | s P S, t P T u of multiplicative sets S and T is a

multiplicative set.
(b) If S is a multiplicative set and a an ideal, then the set S ` a :“ ts ` a | s P

S, a P au is a multiplicative set.

(3) An element x is a unit if there exists an element y such that xy “ 1; it is a
zero-divisor if there exists an element y such that 0 ‰ y and xy “ 0; it is a
non-zero-divisor, or nzd, if it is not a zero divisor. Units are nzds.

(4) The ring A is a field if it is non-zero and every non-zero element of it is a unit.
The following conditions on A are equivalent: (a) A is a field; (b) A has exactly
two ideals (the zero ideal and the whole ring); (c) Every homomorphism from
A to a non-zero ring is an injection.

(5) An ideal that is maximal (under inclusion) among proper ideals is said to be
maximal. If I is a proper ideal, there do exist maximal ideals that contain I
(by Zorn). In particular, the ring admits maximal ideals if it is non-zero.

(6) The following are equivalent for an ideal m: (a) it is maximal; (b) A{m is a field;
(c) There is an onto ring homomorphism from A to a field with m as kernel.
Thus, maximal ideals arise as kernels of epimorphisms from A to fields.
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(7) The ring A is an integral domain if it is non-zero and has no non-zero zero
divisors.
(a) Any subring of an integral domain is an integral domain.
(b) Fields are integral domains.
(c) A finite integral domain is a field.
(d) Let k be a field and a subring of A. Suppose that the dimension of A as a

vector space over k is finite and that A is an integral domain. Then A is a
field. (Hint: For 0 ‰ a in A, consider the powers of a. There must be a non-trivial
linear dependence relation over k among them.)

(8) A proper ideal p is prime if xy P p implies either x P p or y P p (for x, y elements
of A). The following are equivalent for an ideal p of A: (a) p is prime; (b) Azp is
a multiplicative set; (c) the quotient ring A{p is an integral domain.

(9) Maximal ideals are prime (since fields are in particular integral domains). In
fact, ideals that are maximal with respect to not meeting a fixed multiplicative
set are prime.

(10) Every non-zero ideal in Z is of the form nZ for a positive integer n, the integer
n being identified as the smallest positive integer contained in the ideal. The
ideal nZ (where n ě 0) is prime if and only if n is either zero or a prime; it is
maximal if n ‰ 0 and a prime.

(11) (“Modular law”) aX pb` cq “ b` paX cq for ideals a, b, c such that a Ě b.

(12) Let a be an ideal and x an element. The corresponding colon ideal is defined
as follows: pa : xq :“ ty P A | yx P au.
(a) pa : xq Ě a; pa : xq “ A iff x P a; pa` b : xq Ě pa : xq ` pb : xq
(b) paX b : xq “ pa : xq X pb : xq; ppa : xq : yq “ pa : xyq.
(c) Suppose that pa : xq is maximal among proper ideals of that form. Then

pa : xq is prime.

(13) In each of the following cases, find k such that kZ equals (a) mZ ` nZ;
(b) mZX nZ; (c) pmZ : nq; (d) r pmZq.

(14) An element x is nilpotent if xn “ 0 for some integer n ě 1.
(a) All the nilpotent elements together form an ideal, called the nilradical.
(b) If x is nilpotent, then 1´x is a unit. (Hint: p1´xqp1`x`¨ ¨ ¨`xn´1q “ 1´xn.)

More generally, U ` n Ď U , where U is the multiplicative set of units and
n the nilradical.

(c) The nilradical is the intersection of all the prime ideals.

(15) Let a be an ideal. The radical of a, denoted r paq, is by definition the set of
all elements x of the ring such that xn belongs to a for some integer n ě 1
(depending upon x). We say that the ideal a is radical if it equals r paq.
(a) r paq is an ideal.
(b) a Ď bñ r paq Ď r pbq; r pr paqq “ r paq; r paq “ Aô a “ A.
(c) r paq is the intersection of all prime ideals containing a.
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(16) The Jacobson radical of A is defined to be the intersection of the all the maxi-
mal ideals of A. An element x of A belongs to the Jacobson radical if and only
if 1´ xy is a unit for any element y of A.

(17) Let Arxs be the polynomial ring in the indeterminate x with coefficients in A,
and let fpxq “ a0 ` a1x` ¨ ¨ ¨ ` anx

n and gpxq be elements of Arxs.
(a) fpxq is nilpotent ô the ai are nilpotent for all 0 ď i ď n.
(b) fpxq is a unit ô a0 is a unit (in A) and the ai are nilpotent for i ě 1.
(c) fpxq is a zero divisor ô there exists a ‰ 0 in A such that afpxq “ 0.
(d) (Gauss’s Lemma) fpxqgpxq is primitive ô fpxq and gpxq are both primitive.

(A polynomial is primitive if its coefficients generate the unit ideal of A.)

(18) The nilradical and Jacobson radical of Arxs are equal.

(19) A multiplicative set S is saturated if xy P S implies x P S and y P S (for
elements x, y of the ring A).
(a) The units form a saturated multiplicative set. So do the nzds.
(b) A multiplicative set is saturated if it is the complement of a union of ideals.
(c) The complement of a saturated multiplicative set is a union of ideals. In

fact, it is a union of prime ideals.
(d) The complement of the set of units is the union of all maximal ideals.
(e) The set of nzds equals Yx‰0 r pAnn pxqq, where Ann pxq :“ ty P A | yx “ 0u is

the annihilator of x.

(20) Let S be a multiplicative set. The saturation S of S is the smallest saturated
multiplicative set containing S. It exists:
(a) S is the intersection of all saturated multiplicative sets containing S.
(b) S “ tx | D y P A such that xy P Su
(c) AzS is the union of all ideals (respectively, prime ideals) not meeting S.
(d) S “ Aô 0 P S ô 0 P S.
(e) The multiplicative set consisting of the units is the saturation of t1u.

(21) Let S be a multiplicative set not containing 0. (An important instance of this is
when A is non-zero and S “ t1u.) Then there exist multiplicative sets maximal
with respect to containing S and not containing 0 (by Zorn). Let T be such a
maximal multiplicative set. Then:
(a) T is saturated.
(b) The complement of T is a minimal prime ideal.
(c) Given a prime ideal p, apply the above with S “ Azp to conclude that there

exists a minimal prime contained inside p.

(22) Let S be multiplicative set and a an ideal.
(a) S ` a does not contain zero if and only if S does not meet a.
(b) The saturation of S`a is the complement of the union of ideals containing a

and not meeting S.

(23) (Criterion for a prime to be minimal) A prime ideal p is minimal if and only if:
For every x in p there exists y not in p such that xny is nilpotent.
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(24) Let A “ Cr0, 1s be the ring of continuous real valued functions on the compact
interval r0, 1s. For x P r0, 1s, let mx denote the ideal of elements of A that vanish
at the point x.
(a) Each mx is maximal.
(b) The mx are all the maximal ideals.
(c) None of the mx is a minimal prime.

(25) An ideal q is primary if the following condition holds:
for elements x, y such that xy P q, either x P q or y P r pqq.

(a) An ideal q is primary if and only if every nzd in A{q is nilpotent.
(b) What are the primary ideals in the ring Z?
(c) The radical of a primary ideal is prime. If q is primary with r pqq “ p, we

say that q is p-primary.
(d) The intersection of two p-primary ideals is p-primary. In general, however,

the intersection of primary ideals is not primary (example?).
(e) Any ideal whose radical is a maximal ideal is primary.

(26) Two ideals a and b are comaximal if a` b “ A.
(a) ab “ aX b if a and b are comaximal.
(b) If a, b are comaximal and a, c are comaximal, then a, bc are comaximal.
(c) If a, b are comaximal, then so are am, bn for any positive integers m, n.
(d) If r paq, r pbq are comaximal, then so are a, b.
(e) (Chinese Remainder Theorem) Let a1, . . . , ak be ideals. The natural map

AÑ
A

a1
ˆ
A

a2
ˆ ¨ ¨ ¨ ˆ

A

ak

is onto if and only if a1, . . . , ak are pairwise comaximal. The kernel in that
case is a1 ¨ ¨ ¨ ak. (Observe that the kernel is a1 X ¨ ¨ ¨ X ak in any case.)

(27) Let a, a1, . . . , an be ideals. Suppose that a Ď a1 Y ¨ ¨ ¨ Y an.
(a) Suppose that the containment a Ď a1 Y ¨ ¨ ¨ Y an is irredundant, meaning

that it does not hold if any one of the ideals in the union on the right is
dropped. Then:

(i) n ‰ 2. (Suppose that n “ 2. Let a2 be in aza1 and a1 be in aza2. Then a1`a2
belongs to a but not to either of a1, a2.)

(ii) None of the ideals ai is prime. (Suppose that one of them, say an, is
prime. For 1 ď i ď n, Let ai be in azpa1 Y ¨ ¨ ¨ Y ai´1 Y ai`1 Y ¨ ¨ ¨ Y anq.
Such an ai exists by irredundancy. Consider an ` a1 ¨ ¨ ¨ an´1. This belongs
to a, but not to ai (because ai but not an belongs to ai) and not to an (since
a1 ¨ ¨ ¨ an´1 does not belong to an by primality of an, but an does), which is a
contradiction.)

(b) (Prime Avoidance) Suppose that all but at most two of a1, . . . , an are prime.
Then a Ď ai for some i, 1 ď i ď n. (We may suppose, by deleting some of the
ideals a1, . . . , an as necessary, that the containment is irredundant. It follows
from the previous item that a contradiction ensues unless n “ 1.)
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(28) The ring A is local if it admits only one maximal ideal. The following are
equivalent conditions for A to be local:
(a) The non-units form an ideal.
(b) For every non-unit x of the ring, 1´ x is a unit.
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