
KSOM ALGEBRA II 2021 MAY–AUG
NOTES AND TUTORIAL PROBLEMS: SYLOW’S THEOREMS

Let G be a finite group and p an arbitrarily fixed prime p. Write |G| “ pem with
e ě 0 and m being coprime to p. A subgroup of G of cardinality pe is called a Sylow
p-subgroup of G. Such subgroups

(1) always exist (there is at least one of them),
(2) are all conjugate to one another, and
(3) their number k divides m and leaves remainder 1 on division by p.

These assertions, called Sylow’s first, second, and third theorems respectively, will be
proved and discussed in the items below.

(1) (Cauchy’s theorem; proof by J. H. McKay) Let G be a finite group and p a
prime dividing the order of G. Then there exists an element in G of order p.
(Hint: Consider Gp :“ G ˆ ¨ ¨ ¨ ˆ G (p times) and let the cyclic group C “ xc | cp “

1y of order p act on Gp by cpg1, g2, . . . , gpq “ pgp, g1, g2, . . . , gp´1q. The subset S “

tpg1, . . . , gpq | g1g2 ¨ ¨ ¨ gp “ 1u of Gp is stable under the C-action. Since C is a p-group
we have |S| ” |SC | mod p. Observe that S has cardinality |G|p´1 (and so |SC | ” |S| ”

0 mod p). Since p1, 1, . . . , 1q evidently belongs to SC , it follows that there is some other
element also in SC . Any element of SC is of the from pg, g, . . . , gq, with gp “ 1.)

(2) (A proof of Cauchy’s theorem based on induction and the class equation) Let p
be a prime and G a group whose order is divisible by p. We want to show that
G has an element of order p. For this, it suffices to find an element x whose
order k is divisible by p, for then xp{k has order p. We argue by induction on the
order of G that G contains an element whose order is divisible by p. The base
case (|G| “ 1) of the induction being clear, we proceed to the induction step.

Let us first identify two cases when the result holds:
‚ If there is a proper subgroup whose order is divisible by p, then the induc-

tion hypothesis applied to the subgroup gives the result.
‚ If there is a non-trivial central element x, then too we are done as follows.

If x itself has order divisible by p, then of course we are done. If not, then
an element whose order is divisible by p exists in the quotient group G{xxy,
and any pre-image in G of such an element also has order divisible by p.

Finally, we argue that one of the above two cases holds. Suppose that the
first does not. Then every proper subgroup of G has order coprime to p, or, in
other words, every non-singleton orbit of G has cardinality divisible by p. In
particular, every non-singleton conjugacy class of G has cardinality divisible
by p, and it now follows from the class equation that G has non-trivial centre,
so the second case holds. l
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(3) Let p be a prime and n an integer. Write n “ pem, where e ě 0 and p does not
divide m. Show that

`

n
pe

˘

is coprime to p.

(4) Let X be finite set of cardinality coprime to p (where p is some fixed prime) on
which a group G acts. Then there is an orbit of X whose cardinality is coprime
to p (because X is the disjoint union of its orbits). The isotropy at any point of such
an orbit is a subgroup of index coprime to p.

(5) For a subset S and a subgroup H of a group G, we have HS “ S if and only if
S is a union of right cosets of H.

(6) (Sylow’s first theorem) Let G be a finite group and p a prime. Write |G| “ pem
with e ě 0 and pm, pq “ 1. Then G admits a subgroup of order pe. (Outline of the
proof by Wielandt: Consider the left regular action of G on itself and the induced action
on the power set of G. The set X of subsets of cardinality pe of G is stable under this
action. By the observations in items (3) and (4) applied to X, we obtain a subgroup H

of G of index coprime to p (so pe divides |H|) and such that HS “ S for some subset S
of G of cardinality pe. Invoking item (5), we conclude that |H| ď |S| “ pe ď |H|, so
|H| “ pe.)

(7) (Addendum to Sylow’s first theorem) A group of order pe (where p is a prime)
admits subgroups of orders pf for all f , 0 ď f ď e. Thus, with hypothesis as in
item (6), it follows that G admits subgroups of orders pf for all f , 0 ď f ď e.

(8) Recall that |X| ” |XQ| mod p for a finite p-group Q acting on a finite set X.
When the cardinality of X is moreover coprime to p, it follows that X admits
an element fixed by Q.

(9) This item gives another proof of Sylow’s first theorem. This proof uses the
class equation and Cauchy’s theorem, the latter proved variously in items (1)
and (2) above. Fix hypothesis as in item (6). Proceed by induction on the order
of G. The base case being clear (why?), we proceed to the induction step. If G
admits a proper subgroup of index coprime to p, then we are done by induction.
So assume that the contrary holds. From the class equation it follows that the
centre of G has order divisible by p (since every term other than |centrepGq| on
the RHS is divisible by p, and therefore the same is true for this term). Choose
a central element x of order p in G (by Cauchy’s theorem applied to the centre
of G), apply induction to G{xxy to get a subgroup of order pe´1 of this quotient
group, and pull that subgroup back to G.

(10) (Sylow’s second theorem) Let Q be a p-subgroup of a finite group G. Let P be a
Sylow p-subgroup of G (whose existence is assured by item (6)). Prove that Q is
contained in a conjugate of P . If, in particular, Q is itself a Sylow p-subgroup,
then Q must be a conjugate of P . (Hint: Consider the restriction to Q of the natural
action of G on the coset space G{P . By invoking the observation made in item (8), we
conclude that Q fixes some coset gP . This means Qg Ď gP or Q Ď gPg´1.)
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(11) Let P be a Sylow p-subgroup of a finite group G (for some prime p). If P is
unique, then it is clearly normal (since any conjugate is a subgroup of the
same cardinality and hence equals P ). Conversely, if P is normal, then it is
unique (by Sylow’s second theorem).

(12) Let P and P 1 be Sylow p-subgroups of a finite group G. If P normalizes P 1,
then P “ P 1. (Hint: Observe that P 1 is a normal Sylow p-subgroup in its normaliser
NGpP q and is therefore unique (item (11) above). If P normalises P 1, then P is a Sylow
p-subgroup of NGpP q and so equals P 1.)

(13) (Sylow’s third theorem) Let p be a prime, G be a finite group, and k the number
of Sylow p-subgroups of G. Then k divides m, where |G| “ pem with e ě 0
and m coprime to p, and leaves remainder 1 on division by p. (Hint: Consider
the conjugation action of G on itself and the induced action on the power set of G.
The set X of Sylow p-subgroups of G is G-stable and we consider it now as a G-set.
By Sylow’s second theorem (item (10)), it follows that the G-action on X is transitive.
The isotropy at P being NGpP q (=the normaliser in G of P ), we may identify X as a
G-set with G{NGpP q. Thus k “ |X| “ |G{NGpP q|. Since NGpP q Ě P , it follows that
k “ |G{NGpP q| divides |G{P | “ m. Restricting to P the G-action on X, we observe
that P is the unique point that is fixed by P (item (12) above). Since the non-singleton
P -orbits of X have cardinalities divisible by p, it follows that |X| “ k ” 1 mod p.)

(14) Let G be a finite group with p1, . . . , pk being all the distinct prime divisors
of |G|. Let Pi be a Sylow pi-subgroup of G (we are choosing only one for each i
out of several choices, possibly). Then P1, . . . , Pk generate the group G.

(15) (Characteristic subgroups) A subgroup H of a group G is called characteristic
if it is preserved by all automorphisms of G, that is, ϕpHq “ H for every group
automorphism ϕ of G. (In contrast, for a subgroup to be normal, it is enough
that it is preserved by all inner automorphisms.) There are many natural
characteristic subgroups, e.g., the centre, the commutator.

(16) (Nilpotent groups) Given a group G, consider the following sequence of char-
acteristic subgroups: t1u “ G0 Ď G1 Ď G2 Ď . . ., where G0 :“ t1u and Gi is
inductively defined to be containing Gi´1 and such that Gi{Gi´1 is the centre
of G{Gi´1. The group G is said to be nilpotent if Gk “ G for some finite k.
(a) Finite p-groups are nilpotent. This follows from the fact that every finite

p-group has non-trivial centre.
(b) Any proper subgroup of a nilpotent group is properly contained in its nor-

maliser.
(c) Subgroups and quotient groups of nilpotent groups are nilpotent.
(d) G need not be nilpotent even if it admits a nilpotent normal subgroup N

such that G{N is nilpotent. However, if such an N is also central, then G
is nilpotent.

(17) Are the dihedral groups Dn nilpotent?
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(18) Let P be a Sylow p-subgroup of a finite group G. Show that NGpNGpP qq “
NGpP q. (Here NGpHq denotes the normaliser of a subgroup H.) Deduce that any
Sylow subgroup of a finite nilpotent group is normal.

(19) (Structure theorem for finite nilpotent groups) A finite nilpotent group is the
direct product of its Sylow subgroups. (Hint: Each Sylow subgroup is normal since
G is nilpotent (by a previous item). Let P1, . . . , Pk be the Sylow subgroups: there
is precisely one for each prime p since the subgroups are normal (by Sylow’s second
theorem). The subset P1 ¨ ¨ ¨Pk is a subgroup (since the Pi are normal) and P1 ¨ ¨ ¨Pk “ G
(the Sylow subgroups generate G as observed in a previous item). Finally,

P1 ¨ ¨ ¨Pk » P1 ¨ ¨ ¨Pk´1 ˆ Pk » P1 ¨ ¨ ¨Pk´2 ˆ Pk´1 ˆ Pk » . . . » P1 ˆ P2 ˆ ¨ ¨ ¨ ˆ Pk

for P1P2 » P1 ˆ P2 (since P1 X P2 is empty), P1P2P3 » P1P2 ˆ P3 (since P1P2 X P3 is
empty), etc.)

(20) Let Fq be a finite field with q “ pr elements where p is a prime (e.g., r “ 1 and
Fq “ Z{pZ) and let G “ GLnpFqq.
(a) What is the order of a Sylow p-subgroup of G?
(b) Describe any one particular Sylow p-subgroup of G.
(c) How many Sylow p-subgroups does G have?
(d) Show that the subgroup consisting of all invertible upper triangular ma-

trices of G is its own normaliser. (Hint: What is the relevance of this problem
to the present context?)

(21) Let G be a subgroup of a finite group K. Suppose that K has a Sylow p-
subgroup R.
(a) G has a Sylow p-subgroup P , and P “ G X kRk´1 for some k in K. (Hint:

Restrict to G the natural action of K on X “ K{R. Since |X| is coprime to p, there
exists a G-orbit of X that is coprime to p. Let kR be any point on such an orbit
and let P be the isotropy at the point kR. We have Pk Ď kR or P Ď kRk´1. Given
that P is contained in the p-group kRk´1, it follows that P is a p-group. Given
that the index of P is coprime to p, it now follows that P is a Sylow p-subgroup
of G.)

(b) (Alternative proof of Sylow’s first theorem) Now use the existence of Sylow
p-subgroups in the general linear groups GLnpFpq to deduce the existence
of such subgroups in any finite group.

(22) Let f be a non-negative integer. We want to now prove that, for any finite
group G and any prime p such that pf divides |G|, the number Nf of subgroups
of G of order pf satisfies Nf ” 1 mod p. As item (7) asserts, Nf ě 1. For G
such that pf is the largest power of p that divides |G|, this assertion is part of
Sylow’s third theorem (item (13)).

(a) Let G be a group, Z a subgroup of G of order p, and P a p-subgroup of G
that normalises Z. Then P centralises Z. (The automorphism group of Z has
order p ´ 1. Thus the map from P to AutZ defining the conjugation action of P
on Z is trivial.)
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(b) N1 ” 1 mod p for any finite abelian p-group G. (The set of all elements of G
of order p together with the identity element forms a subgroup. The order of this
subgroup is a power of p, say pf . Given that any two subgroups of order p intersect
trivially, we conclude that N1 “ pp

f ´ 1q{pp´ 1q.)

(c) N1 ” 1 mod p for any p-group G. (Consider the conjugation action of G on the
set of subgroups of order p. Any non-singleton orbit has cardinality divisible by p.
If a subgroup Z of order p forms an orbit by itself, then, by item (22a), it belongs
to the centre. Thus we are reduced to the case when G is abelian, which has been
handled in item (22b).)

(d) Let G be a group, and P a subgroup of order pf of G (where p is a prime and
f a non-negative integer). Suppose Q is a subgroup of G that contains P
and is order pf`1. Then Q normalises P . Thus, any subgroup of order pf`1

of G that contains P is contained in NGpP q. (Since Q is a p-group, every
proper subgroup H thereof is properly contained in its normaliser NQpHq. But
P is a maximal subgroup Q.) The number of such subgroups equals N1 of
NGpP q{P , which, when G is a finite p-group, is congruent to 1 mod p (by
item (22c)).

(e) Proof by induction on f that Nf ” 1 mod p for any finite p-group G. (Evi-
dently N0 “ 1. And N1 ” 1 mod p by item (22c). We now suppose that the claim
holds for f and prove that it also holds for f ` 1. Fix G such that pf`1 divides |G|.
Let P1, . . . , Ps be all the subgroups of order pf (of G); and let Q1, . . . , Qt be all the
subgroups of order pf`1. Our goal is to show that t ” 1 mod p.
For each j, 1 ď j ď s, let tj be the number of those Q1, . . . , Qt that contain Pj ; for
each i, 1 ď i ď t, let si be the number of those P1, . . . , Ps that are contained in Qi.
We then have

s
ÿ

j“1

tj “
t
ÿ

i“1

si

By item (22d), it follows that each tj is congruent to 1 modulo p. On the other
hand, the induction hypothesis tells us that s and all the si are congruent to 1

modulo p. Thus the LHS in the above display is congruent to 1 modulo p and the
RHS to t modulo p.)

(f) As the final step in the proof, we now prove the following. Given a finite
group G, a prime p, and f an integer such that pf divides the order of G,
the number Nf of subgroups of G of order pf satisfies Nf ” 1 mod p. (If
f is maximal such that pf divides |G|, then the result follows from Sylow’s third
theorem. We therefore suppose that f is less than maximal, and proceed by a
downwards induction on f . As in the previous item, let Q1, . . . , Qt be all the
subgroups of (of G) order pf`1 and P1, . . . , Ps be all the subgroups of order pf . Let
t1, . . . , ts and s1, . . . , st be defined as above. We have:

s
ÿ

j“1

tj “
t
ÿ

i“1

si
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By item (22e), the si are all congruent to 1 modulo p, and so the RHS is congruent
to t modulo p. By (22d), the tj are all congruent to 1 modulo p, and so the LHS
is congruent to s modulo p. Now, by the induction hypothesis, t is congruent to 1

modulo p. And we conclude that s too is congruent to 1 modulo p.)

(23) (Frattini Argument) Let G be a finite group, N a normal subgroup, and P a
Sylow p-subgroup of N (for some prime p). Show that G “ N ¨NGpP q. (For g an
element of G, consider gP :“ gPg´1. Since N is normal, we have gP Ď gN “ N . Given
that gP is a Sylow p-subgroup of N , it follows, from Sylow’s second theorem (applied
to N ), that there exists n in N such that gP “ nP , which means n´1g belongs to NGpP q,
and we have g “ npn´1gq P N ¨NGpP q.)
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