
KSOM ALGEBRA II 2021 MAY–AUG
NOTES AND TUTORIAL PROBLEMS: GROUP ACTIONS

(1) Let H be a subgroup of a group G. For g an element of G, let gH denote the
conjugate gHg´1 of the subgroup H. Observe that xH ÞÑ xHg´1 “ xg´1gH
defines an isomorphism between the left G-sets G{H and G{gH.

(2) The cardinality of any orbit under the action a finite group G divides the order
of G. In particular, the cardinality of any conjugacy class of G divides the order
of G.

(3) (Revision) Show from first principles that two permutations in the symmetric
group Sn are conjugate if and only if they have the same cycle type.

(4) Let λ “ 1r12r2 . . . be the cycle type of a permutation σ in the symmetric group Sn

on n letters. Let zλ :“ 1r12r2 ¨ ¨ ¨ r1!r2! ¨ ¨ ¨ . Show that the number of conjugates
of σ in Sn is n!{zλ and hence that the centraliser of σ has cardinality zλ.

(5) Let F be a finite field with q elements. (Take, for example, q “ p to be a prime
and F to be Z{pZ.) Let V be a vector space of finite dimension n over F. Let k
be an integer 0 ď k ď n. What is the number of k-dimensional subspaces in V ?

(6) (NBHM Master’s Scholarship Test 2019) Let F be a field with exactly 7 ele-
ments. Let M be the set of all 2 ˆ 2 matrices with entries in F. How many
elements in M are similar to the following matrix?:

ˆ

0 0
0 1

˙

(7) (Cayley restated) For g an element of G, let `g denote the bijection h ÞÑ gh
from G to itself. Then the map g ÞÑ `g defines an injective group homomor-
phism from G to the group SG of bijections of G (where for p and q in SG, the
composition pq is defined to be the result obtained by first acting q first and
then p). The resulting left action of G on G is the left regular action.

(8) (Semi-direct product) Let N be a group on which a group G acts by group auto-
morphisms: GˆN Ñ N denoted pg, nq ÞÑ gn is a left action (that is, 1n “ n and
ghn “ gphnq for all n in N and all g, h in G) and gpn1n2q “

gn1
gn2 for all g in G

and all n1, n2 in N .
(a) In this case we can form a new group called the semi-direct product of N

and G, denoted N ¸ G, as follows. As a set, it is the Cartesian product
N ˆG. Its multiplication is defined by pn, gqpn1, g1q “ pngn1, gg1q. Verify that
this definition satisfies the axioms for the multiplication in a group.

(b) We may identity N and G respectively as the subgroups Nˆt1u and t1uˆG
of N ¸ G. Note that N is normal in N ¸ G (which justifies the notation)
and that the original action of G on N gets identified with the conjugation
action of G on N (within N ¸G): pgn, 1q “ p1, gq´1p1, nqp1, gq.
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(c) If the action of G on N is trivial, then the semi-direct product N ¸G is just
the direct product N ˆG.

(9) (Semi-direct product continued) Let K be a group, N a normal subgroup of K,
and G a subgroup of K. Restrict to G the conjugation action of K on N and
form the semi-direct product N ¸G. We have a natural group homomorphism
N ¸ G Ñ K given by pn, gq ÞÑ ng. We say that K is the semi-direct product of
N and G and write K “ N ¸G if the above homomorphism is an isomorphism.

(10) (Example of a semi-direct product) Given an abelian groupA, there is a natural
action of the group t˘1u “ t1, tu of two elements by group automorphisms on A
given by tpaq “ ´a. We can form the semi-direct product A¸ t˘1u.

(11) (Cayley refined for semi-direct product) Let K “ N ¸ G be a semi-direct prod-
uct. Let ` : N ãÑ SN defined by n ÞÑ `n be the Cayley homomorphism for N ,
where SN denotes the group of bijections of N . The image `pNq is normalized
by the subgroup AutN of group automorphisms of N : for ϕ an automorphism
of N and n an element of N , we have ϕ`nϕ´1 “ `ϕn. Let ρ : G Ñ SN be the
group homomorphism defining the action of G on N by group automorphisms.
Let us now assume that ρ is an injection. Then, by identifying N and G with
their images in SN under ` and ρ respectively, we may realize within SN the
groups N , G, and the action of G on N . The subgroup of SN generated by `pNq
and ρpGq is the semi-direct product `pNq ¸ ρpGq, which is isomorphic to N ¸G.

(12) The solution to this problem is useful in analysing the dihedral group. Let R
and S be respectively reflections of the Euclidean plane R2 in two lines k and l
passing through the origin. Give a geometric description of R ˝ S. When do R
and S commute?

(13) (The dihedral groupDn) LetDn denote the dihedral group, the group of symme-
tries of the regular n-gon. As is well known, it has the following presentation:
Dn “ xr, s | rn “ 1, s2 “ 1, srs´1 “ srs “ rn´1y. Here are some alternative
descriptions of Dn:

(a) the group of automorphisms of the “cyclic graph” on n-vertices.

(b) the semi-direct product Z{nZ¸ t˘1u described in a previous item above.

(c) the group with the presentation xs, t | s2 “ t2 “ 1, pstqn “ 1y.

(14) (The dihedral group D8) This is the semi-direct product Z ¸ t˘1u (obtained
by taking A “ Z in one of the previous items above). It has the presentation
xs, t | s2 “ t2 “ 1y, and can be realized as the subgroup of isometries of the real
line R generated by spxq “ ´x and tpxq “ 1´ x.

(15) Discuss the conjugacy classes of the dihedral group Dn using geometry.

(16) (The group of isometries of R2 » C) Let G be the group of isometries of R2 » C.
We identify three subgroups of G as follows:

‚ The subgroup C generated by the map c : z ÞÑ z̄ is isomorphic to t˘1u.
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‚ The group tλ P C | |λ| “ 1u (of non-zero complex numbers under multipli-
cation) embeds in G by λ ÞÑ eλ, where eλpzq :“ zλ for z in C. We denote its
image by R.

‚ The group pC,`q embeds in G by x ÞÑ tx, where tx : z ÞÑ z ` x. We denote
its image by T .

Observe that C normalizes R (ceλc´1 “ ceλc “ eλ̄). The subgroup generated
by C and R is the semi-direct product R ¸ C. The subgroup T is normal in G
(gTxg´1 “ Tgpxq) and G is the semi-direct product T ¸ pR ¸ Cq.

(17) True of false?: Given an arbitrary subset S of G, there is a unique maximal
subgroup K of G such that S is a union of right cosets of K.

(18) Let G denote the cyclic group of order m. For n a positive integer let qpnq be
the number of G-isomorphism classes of G-sets of cardinality n. Set qp0q “ 1
(by definition). Show that the generating function Qptq :“

ř

ně0 qpnqt
n equals

Qptq “
1

ś

d|m

p1´ tdq

(19) For each of the following groups G, determine the number of orbits for the
action of G on the power set of G induced from the left regular action of G on
itself: the cyclic group of order 10, the Dihedral group Dp where p is an odd
prime, and the symmetric group S4. (Answers: 108, 2p2p´1 ` p´ 1q{p, 701696.)

(20) Let H be a subgroup of a group G of finite index d. Then there exists a normal
subgroup N of G that is contained in H and such that G{N imbeds in the
symmetric group Sd. In particular, the index of N in G is at most d!. (Hint:

Let N “ XgPG
gH. Then the group homomorphism from G to SG{H defining the left action of G on G{H factors

through G{N and the resulting map from G{N is injective.) In particular, an infinite simple group
does not admit a finite index subgroup.

(21) (Jordan’s lemma) LetX be a finite set consisting of at least 2 elements on which
a group G acts transitively. Then there exists an element g of G that fixes no
element of X. (Hint: We reduce to the case when G is finite using item (20) above. Invoke Burnside’s lemma.

The RHS of the lemma should work out to 1. Suppose that |Xg | ě 1 for every g in G. Then the RHS is strictly bigger

than 1, since |X id| “ |X| ě 2, a contradiction.)

(22) (Some corollaries of Jordan’s lemma) Given a finite but non-singleton conju-
gacy class in a group, there exists an element of the group that commutes with
no element of the conjugacy class. Given a finite index proper subgroup H of a
group, the conjugates of H cannot cover the group.

(23) Let G be a p-group and X a G-set. Then |X| ” |XG| mod p. (Write X as a disjoint
union of its orbits. The elements each of which forms a singleton orbit by itself are
precisely those belonging to XG. The cardinalities of the non-singleton orbits are
divisible by p, since they divide |G| and are bigger than 1.) Taking X to be G itself
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with the conjugation action, we conclude that every p-group has non-trivial
centre. (Because XG in that case is the centre, and XG is non-empty since the identity element belongs to it.)

(24) Let G be a group, and N a central subgroup such that G{N is cyclic. Then G is
abelian. Conclude, using this fact, that a group of order p2 (where p is a prime)
is abelian.

(25) There exists a non-abelian group of order p3 (for any prime p).

(26) (The class equation) Consider the conjugation action of a finite group G on
itself. The orbits are the conjugacy classes. An element of the group forms a
conjugacy class by itself if and only if it is central. We thus obtain

|G| “ |centre of G| `
ÿ

|C|

where the sum is over all non-singleton conjugacy classes C. This is called the
class equation of G. Note that each summand |C| occurring in the sum on the
RHS is a factor of |G| (see item (2) above).
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