
KERALA SCHOOL OF MATHEMATICS
ALGEBRA II 2021 MAY–AUG, FINAL EXAM

Instructions: Answer all questions. To get full credit, you must justify your answers.
(1) Let A be a commutative ring with identity containing a field k as a subring.

Suppose that A is finite dimensional as a k-vector space (under the induced
structure). For each of the following statements, determine whether it is true
or false, and give your reasons (either a proof, or a counter example):
(a) A is Artinian (as a ring).
(b) A is Noetherian (as a ring).
(c) If A is an integral domain, then it is a field.
(d) The nil-radical and Jacobson radical of A are the same.

SOLUTION: All the statements are true.
Suppose that d is the dimension of A as a vector space over k. Any chain of k-vector

subspaces of A (with strict inclusions) can have at most d`1 elements. This is because
if V Ĺ W are subspaces then dimV ň dimW . In particular, the ascending chain
condition and descending chain condition hold for subspaces of A. Since the ideals
of A are subspaces, these conditions hold for them. This proves that A is Noetherian
and Artinian.

Now suppose thatA is an integral domain and let 0 ‰ x be an element ofA. Consider
1, x, x2, . . . . These cannot be linearly independent (over k), since the size of any
linearly independent set is at most d. Choose ` least such that 1, x, . . . , x` are linearly
dependent, and let

ř

0ďiď` λix
i “ 0 be a non-trivial dependence relation (with λi P k),

which we rewrite as xp
ř

1ďiď` λix
i´1q “ λ0. It is enough to prove λ0 ‰ 0, for then λ0

will be a unit in k and thus x will be a unit in A. Suppose, by way of contradiction,
that λ0 “ 0. Then, since A is an integral domain,

ř

1ďiď` λix
i´1 “ 0 is a non-trivial

linear dependence relation among 1, x, . . . , x`´1, contradicting the minimality of `.
Let p be a prime ideal in A. Then pX k “ 0 and A{p contains k as a subring and has

finite dimension as a vector space over k. Since A{p is also an integral domain, it now
follows from the previous part that it is a field. Thus every prime ideal ofA is maximal,
and the nilradical of A and the Jacobson radical of A coincide. (The nilradical is the
intersection of all prime ideals and the Jacobson radical the intersection of all maximal
ideals.) l
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(2) Consider left ideals in the ring M4pZ{3Zq of 4 ˆ 4 matrices with entries in the
field Z{3Z of three elements.
‚ What are their possible cardinalities?
‚ How many are there of each cardinality?

SOLUTION: Let k be the field Z{3Z. We identify M4pZ{3Zq with the ring A :“ EndkpV q
of k-linear endomorphisms of a 4-dimensional vector space V over k. As was shown in a
tutorial exercise, the left ideals of M4pZ{3Zq are in bijection with subspaces of V : for a
subspace W , the corresponding left ideal `W comprises the endomorphisms vanishing
on W .

The dimension as a k-vector space of `W is dimV pdimV ´ dimW q “ 4p4 ´ dimW q.
Thus the cardinality of `W is 34p4´dimW q. Since W can have dimension 0, 1, 2, 3, or 4,
the possible cardinalities of left ideals in A are 316, 312, 38, 34, and 30.

To count the number of left ideals of a given cardinality 34p4´dq, we need only count
the number of subspaces of dimension d in V . Recall that we learnt how to solve such
counting problems in class. Fix a d, 0 ď d ď 4. The group G :“ GL4pkq acts transitively
on the set of all d-dimensional subspaces of V . So this set can be identified with the
left cosets G{H, where H is the stabiliser of any fixed d-dimensional subspace.

Recall that |GLdpkq| “ p|k|
d´1q¨p|k|d´|k|q¨¨ ¨ ¨ ¨p|k|d´|k|d´1q. A little thought (e.g., by

letting H be the stabiliser of the subspace spanned by the span of the standard basis
vectors e1, . . . , ed) shows that |H| equals |GLdpkq| ¨ |GL4´dpkq| ¨ |k|

dp4´dq so that
ˇ

ˇ

ˇ

ˇ

G

H

ˇ

ˇ

ˇ

ˇ

“
|G|

|H|
“

|GL4pkq|

|GLdpkq| ¨ |GL4´dpkq| ¨ |k|dp4´dq

Substituting values 0 through 4 into d in the above, we see that the number of left
ideals of cardinality 3dp4´dq is, respectively, 1, 40, 130, 40, 1 for d equal to 0, 1, 2, 3, 4. l

(3) State whether the following assertion is true or false. Justify your answer with
a proof or counter example as the case may be.

Let p be a prime, G a finite group, P a Sylow p-subgroup of G, and
H a subgroup of G that contains the normaliser NGpP q of P . Then
NGpHq “ H.

SOLUTION: The statement is true. Here is a proof. It is enough to show that H Ě

NGpHq, the other containment being trivially true (for any subgroupH of any groupG).
Let x P NGpHq. Then xPx´1 Ď xHx´1 “ H. Thus xPx´1 is a Sylow p-subgroup of H
(note that xPx´1 is a Sylow p-subgroup of G and being contained in H is a Sylow p-
subgroup of H too). By Sylow’s second theorem (applied in the group H), there exists h
in H such that xPx´1 “ hPh´1 (since P and xPx´1 are both Sylow p-subgroups of H).
This means x´1h P NGpP q Ď H, and so x P H. l
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(4) In how many ways can the edges of a regular tetrahedron be coloured with two
colours?
SOLUTION: The answer can be obtained as an application of the Orbit Counting
Lemma (OCL), by counting the number of orbits for the action of the symmetry group
of the regular tetrahedron on the set of colourings of the edges (of the labelled tetra-
hedron). Alternatively, a brute force approach is also possible.

The group of symmetries of the regular tetrahedron can be identified with the alter-
nating group A4. The number of colourings of the six edges with two colours is 26 “ 64.
The number of colourings left fixed respectively by the elements identity, a product of
two disjoint transpositions, and a three cycle is 26, 24, and 22. Thus the number of A4

orbits on the set of colourings of the edges is, by the OCL:
1

12

`

26 ` 3ˆ 24 ` 8ˆ 22
˘

“ 12 l

(5) Determine the numbers in the class equation of the Dihedral group D12 (of
order 24).
SOLUTION: Let X be a regular dodecagon. Let r denote the rotation (say, counter
clockwise) by an angle of π{6 of X about its centre. Let s denote the reflection in
a line through a pair of opposite vertices of X. The group D12 of symmetries of X
is generated by r snd s. The relations between r and s are all consequences of the
following basic relations: r12 “ 1, s2 “ 1, srs´1 “ r´1 “ r11.

Using these, we can see that D12 comprises 24 elements: twelve rotations rj , 0 ď
j ă 12, and twelve reflections srj , with 0 ď j ă 12. The conjugacy classes in D12

are: t1u, tr6u, tr, r11u, tr2, r10u, tr3, r9u, tr4, r8u, tr5, r7u, ts, sr2, sr4, sr6, sr8, sr10u, and
tsr, sr3, sr5, sr7, sr9, sr11u. Thus the class equation is 1` 1` 2` 2` 2` 2` 6` 6 “ 24. l

(6) Let M be a finitely generated abelian group.
(a) Let S and T be maximal linearly independent subsets of M . Must S and T

have the same cardinality?
SOLUTION: Yes: both S and T have cardinality equal to the rank of M .
PROOF: M being a Noetherian Z-module, all its submodules are finitely gener-
ated. In particular, the torsion TM is finitely generated and there exists a positive
integer d that kills TM .

Lemma 1. Elements m1, . . . , mn of M are linearly independent if and only if their
images m1, . . . , mn in M{TM are linearly independent.

PROOF: If a1m1`¨ ¨ ¨`anmn P TM (with ai in Z), then da1m1`¨ ¨ ¨`danmn “ 0. l

Thanks to the lemma, we may assume that M is free and so isomorphic to Zr for
some non-negative integer r. Now, thanks to the following lemma, whose proof we
leave as an exercise, it follows that a set of elements of Zr is maximally linearly
independent if and only if the elements form a basis for Qr. Thus the cardinality
of any such set must be r.

Lemma 2. Elements m1, . . . , mr of Zr are linearly independent if and only if they
are linearly independent (over Q) in Qr. l
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(b) Let ϕ be an abelian group endomorphism of M . For each of the following
statements, determine whether it is true or false. Justify your answer.

(i) If ϕ is surjective, then it is an isomorphism.
SOLUTION: Yes.1

PROOF: If M is torsion then it is finite (since M is finitely generated by
hypothesis), and then of course the statement is true. Let us now prove the
statement when M is free. In this case we have M » M ‘ kerϕ (since any
surjective homomorphism to a free module splits). Thus kerϕ is also free,
and by equating ranks on both sides we conclude that kerϕ “ 0.
We can use the snake lemma to derive the result in the general case by
combining the results in the two special cases above. Note that ϕ maps
the torsion TM to itself and that the induced map ϕ : M{TM Ñ M{TM is
surjective. Since M{TM is free, we conclude, from the second special case
above, that ϕ is an isomorphism, and so kerϕ “ 0.
Let us now apply the snake lemma. Suppose that the rows in its diagram
are both 0 Ñ TM Ñ M Ñ M{TM Ñ 0 and the vertical maps are (those
induced by) ϕ. The cokernel of ϕ : TM Ñ TM is caught between kerϕ

and the cokernel of ϕ in the exact sequence of the conclusion of the snake
lemma, and hence vanishes. It follows (by the first special case above) that
the ϕ : TM Ñ TM is an isomorphism. Finally, kerϕ being caught between
the kernel of ϕ : TM Ñ TM and kerϕ is also forced to vanish. l

(ii) If ϕ is injective, then it is an isomorphism.
SOLUTION: False. Multiplication by 2 on Z is injective but not surjective.l

1The statement holds in general for any Noetherian module, as we show now. Consider the as-
cending chain kerϕ Ď kerϕ2 Ď . . . Ď kerϕi Ď . . .. Let i " 0 such that kerϕi “ kerϕ2i. Since ϕ is
surjective, so is ϕi. We claim that ϕi is injective (it suffices to prove this, since then ϕ is forced to be
injective as well). Suppose ϕipmq “ 0. Since ϕi is surjective, there exists m1 such that m “ ϕipm1q. But
then ϕ2ipm1q “ ϕipmq “ 0, which means m1 belongs to kerϕ2i. But kerϕ2i “ kerϕi (by choice of i), so
m “ ϕipm1q “ 0. l
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(7) Let M , M 1, and N be finitely generated abelian groups. Assume that M ‘N »

M 1 ‘N . Is it true that M »M 1? Justify your answer.
SOLUTION: By one of the versions of the structure theorem for finitely generated
abelian groups, N is a finite product of cyclic groups with the finite factors being of
prime power orders. Thus we are immediately reduced to the case when N equals Z
or Z{prZ for some prime power pr ą 1.

To show that M » M 1, it is enough to show that TM » TM 1 and rankM “ rankM 1

(because M » TM ‘ ZrankM and similarly for M 1). We are given that M ‘ N »

M 1‘N , which is equivalent (for the same reason as above) to saying that T pM ‘Nq »
T pM 1 ‘ Nq and that rank pM ‘Nq “ rank pM 1 ‘Nq. But T pM ‘ Nq “ TM ‘ TN and
rank pM ‘Nq “ rankM ` rankN and similarly with M 1 in place of M . Thus we readily
obtain that rankM “ rankM 1, and it is enough to show that TM » TM 1.

By the primary decomposition theorem, TM “ ‘` prime`pMq, where ` varies over all
the primes, and `pMq denotes the `-primary component of M . Similarly for M 1. Thus
it is enough to show that `pMq “ `pM 1q for every prime `.

Suppose that N “ Z. Then T pM‘Nq “ TM‘TN “ TM and similarly T pM 1‘Nq “
TM 1. So we immediately have TM » TM 1.

Now suppose that N “ Z{prZ. We have `pM ‘Nq “ `pMq for ` ‰ p and ppM ‘Nq “
ppMq ‘N and similarly for M 1. Thus we immediately conclude that `pMq “ `pM 1q for
` ‰ p.

The only case that remains is when ` “ p. The structure theorem for finite p-
primary abelian groups (finitely generated modules over Z{pkZ for some k ě 1) says
that isomorphism classes of these are in one-to-one correspondence with multisets of
non-negative integers; furthermore, denoting by λp¨q the multiset function on such
modules, the multiset λpA ‘ Bq corresponding to the direct sum A ‘ B of two such
modules A and B is the multiset-union of the multisets λpAq and λpBq. From ppMq ‘

N » ppM 1q‘N we are thus lead to an equality of multisets λpppMqqYtru “ λpppM 1qqY

tru, from which it is immediate that λpppMqq “ λpppM 1qq and so ppMq » ppM 1q. l
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(8) Determine the following:
(a) The number of abelian group homomorphisms from Z{9Z‘ Z{3Z to Z{3Z.
(b) The number of such homomorphisms that are surjective.
(c) The number of such surjective homomorphisms that are split. (A surjective

homomorphism ϕ : M Ñ N of abelian groups is split if there exists a group
homomorphism ψ : N ÑM such that ϕ ˝ ψ is the identity map on N .)

SOLUTION: The homomorphisms from a direct sum are in bijection with the direct
product of homomorphisms from each factor (by the universal property of direct sum).
A homomorphism from a cyclic group is determined by the image of any fixed genera-
tor. The image under a homomorphism of any generator of either Z{9Z or Z{3Z can be
any element of Z{3Z. Thus the answer to part (a) is 3ˆ 3 “ 9.

Since Z{3Z is a simple group, any non-zero homomorphism to it is onto. Thus,
out of the 9 homomorphisms in part (a), the only one that is not onto is the zero
homomorphism. The answer to part (b) is therefore 9´ 1 “ 8.

To answer part (c), we claim that a homomorphism ϕ as in part (a) is (surjective
and) split if and only if its restriction ϕ| to the second factor Z{3Z is an isomorphism.
Assuming the claim, we see that the number of such homomorphisms is 3ˆ 2 “ 6 (the
image of the generator of the first factor Z{9Z can be arbitrary, and the image of the
generator of the second factor Z{3Z must be non-zero).

It remains only to prove the claim. Suppose that ϕ| is an isomorphism. Then ϕ

is split: a splitting homomorphism is obtained by the product of the zero homomor-
phism from Z{3Z to the first factor Z{9Z and the inverse of ϕ| from Z{3Z to the second
factor Z{3Z. For the converse, suppose now that ϕ is split. Note that any splitting
homomorphism—call it ψ—is zero when further composed with the projection on to
the first factor (since the only homomorphism from Z{3Z to Z{9Z is the trivial one).
Thus ϕ| ˝ ψ is the identity map on Z{3Z, and ϕ| is a bijection. l
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