AIS AT CMI JUNE–JULY 2022 TUTORIAL SHEET 5: CONSEQUENCES OF WEDDERBURN AND MASCHKE

- (1) Let A be a finite dimensional semisimple algebra over an algebraically closed field k. Deduce the following as corollaries of Wedderburn's structure theorem:
 - (a) There are as many isomorphism classes of simple *A*-modules as the dimension of the centre of *A* as a *k*-vector space.
 - (b) Let V_1, \ldots, V_ℓ be the complete list of pairwise non-isomorphic simple A-modules, and d_1 , \ldots, d_ℓ their respective dimensions as k-vector spaces. Then $\dim_k A = d_1^2 + \cdots + d_\ell^2$. More precisely, we have

$$A = V_1^{\oplus d_1} \oplus \dots \oplus V_k^{\oplus d_k}$$

where $_AA$ denotes A as a left module over itself.

- (c) (DENSITY) Given a list V_1, \ldots, V_r of pairwise non-isomorphic simple A-modules and a list $\varphi_1, \ldots, \varphi_r$ of k-linear endomorphisms respectively of V_1, \ldots, V_r , there exists a in A such that, for each $i, 1 \leq i \leq r$, the map $v \mapsto av$ on V_i equals φ_i .
- (d) (BURNSIDE'S LEMMA; special case of the previous item) If V is a simple A-module, then the k-algebra homomorphism $A \rightarrow \operatorname{End}_k V$ (that defines V) is onto.
- (2) Let G be a finite group and k be a field. A k-valued function φ on G is a <u>class function</u> if φ is constant on conjugacy classes. The centre $\mathfrak{Z}(kG)$ admits the following description:

$$\mathfrak{Z}(kG) = \{\sum_{g \in G} \varphi(g)g \,|\, \varphi \text{ is a class function}\}$$

Thus the dimension of the centre of kG equals the number of conjugacy classes in G.

(3) Let G be a finite group and k be a field. Suppose that characteristic of k is either 0 or, if positive, then does not divide |G|. Then the group algebra kG is semisimple (Maschke's theorem). If, further, k is algebraically closed, the conclusions in the first item above hold with A = kG.

TUTORIAL SHEET 6: CHARACTER THEORY

- (1) Let V be a linear representation of a finite group G over the complex numbers. Show that V is <u>unitarizable</u>, that is, there exists an Hermitian G-invariant inner product on V. (Hint: Take any inner product and average it.)¹
- (2) Let G be a group, k a field, and $\rho: G \to GL_k(V)$ a k-linear representation of G over k. Suppose that $d := \dim_k V < \infty$. By choosing a k-basis \mathfrak{B} of V, we get a group homomorphism $\rho_{\mathfrak{B}}: G \to GL_d(\mathbb{R})$, which we may call the "matrix representation corresponding to ρ with respect to the basis \mathfrak{B} ". What is the matrix representation $\rho_{\mathfrak{B}*}^*$ corresponding to the dual $\rho^*: G \to GL(V^*)$ with respect to the dual basis \mathfrak{B}^* of V? (Hint: Answer: $(\rho_{\mathfrak{B}*}^*(g))_{ij} = (\rho_{\mathfrak{B}}(g^{-1}))_{ij}$. In other words, it is the inverse-transpose of the matrix representation of ρ with respect to \mathfrak{B} .)
- (3) Deduce from the above two items that $\chi_{V*} = \overline{\chi_V}$, for a finite dimensional complex linear representation V of a group. Here V* denotes the dual of V and χ the character.
- (4) Let G be a finite group and $\rho : G \to GL_n(\mathbb{R})$ a group homomorphism. Does there exist σ in $GL_n(\mathbb{R})$ such that $\sigma\rho(g)\sigma^{-1}$ is an orthogonal matrix for every g in G?

¹This can be used to show that every complex representation V of G is semisimple. Given a sub-representation W, we could fix a G-invariant Hermitian inner product on V and observe that W^{\perp} (with respect to that inner product) is G-invariant.