
TUTORIAL SHEET 8

Commutant and bicommutant

Let A be a ring with identity, M an A-module. Let C and B be the commutant
and bicommutant of M respectively.

(1) Take M to be A as a left module over itself. Identify C and B.
(2) Recall the following: let M be semisimple; then it is simple if and only if it

is simple as a B-module. Can the assumption of semisimplicity be omitted?
(3) Let N be an A-direct summand of M . Let BN denote the bicommutant

of N . Since B preserves N , there is a ring homomorphism B → EndZ N ,
which has image in BN . Show that this need be neither surjective nor
injective in general.

(4) Show that the bicommutant of M⊕n as an A-module is the ring of homo-
theties as a B-module. (This can be paraphrased loosely as “bicommutants

commute with self direct sums”. Taking A to be a field k and M to be k itself as

a left module, we recover the familiar fact that the centre of n× n matrices over

k consists of scalar matrices.)

Extension of scalars

Let k ⊆ L be fields and G a group. “Extending scalars from k to L,” we may pass
from linear representations over k to those over L.

(1) For finite dimensional representations V and W of G over k, we have
HomG(V,W )⊗k L = HomG(V ⊗k L,W ⊗k L).

(2) A linear representation is absolutely irreducible if it is irreducible under any
extension of scalars (in particular, it is irreducible). A linear representation
is absolutely semisimple if it is semisimple under any extension of scalars.
The following are equivalent for a finite dimensional absolutely semisimple For a finite group

over a field of
characteristic 0 any
representation is
absolutely
semisimple.

representation V over k:
(a) V is absolutely irreducible;
(b) V ⊗ k̄ is irreducible where k̄ is an algebraic closure of k;
(c) EndG(V ) consists only of multiplications by elements of k.

Density theorem and Burnside’s Lemma

(1) Let k be an algebraically closed field and A a k-algebra. Let M1, . . . , Mn

be simple A-modules, no two of which are isomorphic, and all of which are
finite dimensional over k. Given φi ∈ Endk Mi, 1 ≤ i ≤ n, there exists
a ∈ A such that the action of a on Mi is φi.

(2) (a) If V and W are finite dimensional irreducible representations over an
algebraically closed field of groups G and H respectively, then V ⊗W is
an irreducible representation of G×H. (Hint: The image of G in End V

spans all of End V , similarly for H and End W ; thus the image of G × H

spans all of End V ⊗End W = End (V ⊗W ), which implies the irreducibility

of V ⊗W .)
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(b) Conversely every finite dimensional irreducible representation of G×H
arises uniquely thus. (Hint: Suppose that U is an irreducible module for

G×H. Let V be a simple G-sub of U , and W a simple H-sub of HomG(V, U).

Then we get a non-trivial G×H homomorphism from V ⊗W → U , which

is an isomorphism (since U is simple by hypothesis and V ⊗ W is so by

part (a)). The uniqueness follows since V ⊗W is isotypic for G of type V

and also for H of type W .)

(c) The proof of part (b) shows that, over any field, every irreducible
representation of G × H arises as a quotient of V ⊗ W for some V
irreducible over G and W irreducible over H.

(d) The statements in (a) and (b) fail over non-algebraically closed fields.
Take, for example, G and H to be cyclic groups of orders 3 and 5 and
the field to be consisting of the real numbers.

(3) Let V be a finite dimensional vector space over a field. A linear trans-
formation u on V is unipotent if u − 1 is nilpotent. The purpose of this
exercise is to outline a proof of the following statement (which generalizes
the assertion in Exercise 2 of Tutorial sheet 3):

Given a subgroup of GL(V ) consisting of unipotent elements,
there exists a basis of V with respect to which all elements of
the subgroup are represented by unipotent upper triangular ma-
trices.

(Solution: Denote the subgroup by G. It is enough to show that G fixes some

non-zero vector. We may assume without loss of generality that V is simple;

further we may assume that the base field is algebraically closed. Fix g in G.

Consider the equation Tr(Xg) = Tr(X), where X is a variable in the space of all

endomorphisms of V . Observe that it holds when X takes values in the group,

and that it is linear in X. The linear span of elements of the group being all

of End(V ) by Burnside’s lemma, it follows that the equation is an identity on

End(V ). But (X, Y ) 7→ Tr(XY ) is a non-degenerate bilinear form on End(V ), so

g must be the identity, which means that the group is the trivial one.)

(4) Deduce from the density theorem Jacobson’s original version of it: Let V
be a simple module over a ring A. Then D := EndA V is a division ring
(by Schur’s lemma). Consider V as a vector space over D. The action
of A on V is dense with respect to D, i.e., given finitely many D-linearly
independent elements v1, . . . , vm of V and an equal number of arbitrary
elements w1, . . . , wm of V there exists a in A such that av1 = w1, . . . ,
avm = wm.

(5) Let V be a finite dimensional vector space over a division ring D. Let A
be a subring of D-endomorphisms of V . Assume that A is 2-transitive,
i.e., given any two linearly independent elements v, w of V and any two
elements v′, w′ of V , there exists a in A such that av = v′ and aw = w′.1

Show that the commutant of A is D and that A = EndD V .

1This should be taken to mean that A is also 1-transitive (to cover for the situation when there

may not exist two linearly independent elements, lest the hypothesis on A become vacuous).


