TUTORIAL SHEET 8

COMMUTANT AND BICOMMUTANT

Let A be a ring with identity, M an A-module. Let C' and B be the commutant
and bicommutant of M respectively.

(1) Take M to be A as a left module over itself. Identify C' and B.

(2) Recall the following: let M be semisimple; then it is simple if and only if it
is simple as a B-module. Can the assumption of semisimplicity be omitted?

(3) Let N be an A-direct summand of M. Let By denote the bicommutant
of N. Since B preserves N, there is a ring homomorphism B — Endy N,
which has image in By. Show that this need be neither surjective nor
injective in general.

(4) Show that the bicommutant of M®" as an A-module is the ring of homo-
theties as a B-module. (This can be paraphrased loosely as “bicommutants
commute with self direct sums”. Taking A to be a field k and M to be k itself as
a left module, we recover the familiar fact that the centre of n x n matrices over
k consists of scalar matrices.)

EXTENSION OF SCALARS

Let k£ C L be fields and G a group. “Extending scalars from k to L,” we may pass
from linear representations over k to those over L.

(1) For finite dimensional representations V and W of G over k, we have
HOHlG(V7 W) Rk L = HomG(V Rk L, W ® L)

(2) A linear representation is absolutely irreducible if it is irreducible under any
extension of scalars (in particular, it is irreducible). A linear representation
is absolutely semisimple if it is semisimple under any extension of scalars.
The following are equivalent for a finite dimensional absolutely semisimple
representation V' over k:

(a) V is absolutely irreducible;
(b) V @k is irreducible where k is an algebraic closure of k;
(¢) Endg (V) consists only of multiplications by elements of k.

DENSITY THEOREM AND BURNSIDE’S LEMMA

(1) Let k be an algebraically closed field and A a k-algebra. Let My, ..., M,
be simple A-modules, no two of which are isomorphic, and all of which are
finite dimensional over k. Given ¢; € Endg M;, 1 < i < n, there exists
a € A such that the action of a on M; is ¢;.

(2) (a) If V and W are finite dimensional irreducible representations over an

algebraically closed field of groups G and H respectively, then VW is
an irreducible representation of G x H. (Hint: The image of G in End V
spans all of End V', similarly for H and End W; thus the image of G x H
spans all of End V®End W = End (V ® W), which implies the irreducibility
of Ve W.)

For a finite group
over a field of
characteristic 0 any
representation is
absolutely
semisimple.
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(b) Conversely every finite dimensional irreducible representation of G x H
arises uniquely thus. (Hint: Suppose that U is an irreducible module for
Gx H. Let V be a simple G-sub of U, and W a simple H-sub of Homg (V, U).
Then we get a non-trivial G X H homomorphism from V ® W — U, which
is an isomorphism (since U is simple by hypothesis and V' @ W is so by
part (a)). The uniqueness follows since V ® W is isotypic for G of type V
and also for H of type W.)

(¢) The proof of part (b) shows that, over any field, every irreducible
representation of G x H arises as a quotient of V ® W for some V
irreducible over G and W irreducible over H.

(d) The statements in (a) and (b) fail over non-algebraically closed fields.
Take, for example, G and H to be cyclic groups of orders 3 and 5 and
the field to be consisting of the real numbers.

(3) Let V' be a finite dimensional vector space over a field. A linear trans-
formation u on V is unipotent if w — 1 is nilpotent. The purpose of this
exercise is to outline a proof of the following statement (which generalizes
the assertion in Exercise 2 of Tutorial sheet 3):

Given a subgroup of GL(V) consisting of unipotent elements,
there exists a basis of V with respect to which all elements of
the subgroup are represented by unipotent upper triangular ma-
trices.

(Solution: Denote the subgroup by G. It is enough to show that G fixes some
non-zero vector. We may assume without loss of generality that V is simple;
further we may assume that the base field is algebraically closed. Fix g in G.
Consider the equation Tr(Xg) = Tr(X), where X is a variable in the space of all
endomorphisms of V. Observe that it holds when X takes values in the group,
and that it is linear in X. The linear span of elements of the group being all
of End(V') by Burnside’s lemma, it follows that the equation is an identity on
End(V). But (X,Y) — Tr(XY) is a non-degenerate bilinear form on End(V'), so
g must be the identity, which means that the group is the trivial one.)

(4) Deduce from the density theorem Jacobson’s original version of it: Let V'
be a simple module over a ring A. Then D := End4 V is a division ring
(by Schur’s lemma). Consider V as a vector space over D. The action
of A on V is dense with respect to D, i.e., given finitely many D-linearly

independent elements vy, ..., v, of V and an equal number of arbitrary
elements w1y, ..., w,, of V there exists a in A such that av; = w1, ...,
AV = Wy -

(5) Let V be a finite dimensional vector space over a division ring D. Let A
be a subring of D-endomorphisms of V. Assume that A is 2-transitive,
i.e., given any two linearly independent elements v, w of V and any two
elements v/, w’ of V, there exists a in A such that av = v’ and aw = w'.}

Show that the commutant of A is D and that A = Endp V.

IThis should be taken to mean that A is also 1-transitive (to cover for the situation when there
may not exist two linearly independent elements, lest the hypothesis on A become vacuous).



