TUTORIAL SHEET 6

In what follows, p denotes a prime number, and $q=p^{r}$ for some integer $r \geq 1$. A conjugacy class in a finite group is p-regular if the order of any of its elements is prime to p; is p-singular otherwise. Exercises $2-4$ and the last item in Exercise 1 are purely group theoretic statements. These will be used later.
(1) Listed below is a series of elementary but important observations. Let G be a finite group acting on a finite set X.
(a) The G-orbits of X form a partition of X (evidently).
(b) In particular, $|X|=\left|X^{G}\right|+\sum \mid$ orbits \mid, where X^{G} is the subset of X consisting of the G-fixed points of X and the sum is over the nonsingleton orbits.
(c) Taking X to be G acted upon by itself by conjugation we get the CLASS EQUATION: $|G|=\mid$ Centre of $G\left|+\sum\right|$ class \mid, where the sum is taken over the non-singleton conjugacy classes.
(d) When G is a p-group, we get $|X| \equiv\left|X^{G}\right| \bmod p$, since the non-trivial orbits have cardinalities divisible by p.
(e) The center of a p-group is non-trivial. (Hint: Combine the previous two items.) If the group has order p^{2}, it is abelian.
(2) The number of p-regular conjugacy classes in $\operatorname{SL}(2, q)$ is q.
(3) For g an element of finite order in a group, there is a unique expression ${ }^{1}$ $g=s u$, with s, u in the group, such that

- the order of s is coprime to p, that of u is a power of p;
- s and u commute.

Evidently, s has order r and u order p^{e}, where the order of g is written as $p^{e} s$ with $(p, s)=1$.
(4) Let elements x, y of a group be non-conjugate. Let their orders be coprime to p. Then $x^{p^{e}}$ and $y^{p^{e}}$ are non-conjugate (for all $e \geq 0$).

[^0]
[^0]: ${ }^{1}$ This is the Jordan decomposition when the finite group G is realized as a linear algebraic group over a (perfect) field of characteristic p.

