TUTORIAL SHEET 23 GREEN CORRESPONDENCE (THE TRIVIAL INTERSECTION CASE)

Let k be an algebraically closed field of positive characteristic, G a finite group, P a Sylow p-subgroup of G. Assume that, for every $g \in G$, either ${}^{g}P \cap P = \{1\}$ or ${}^{g}P = P$. Let L denote the normalizer of P in G. Let kG and kL be the group rings of G and L with coefficients in k.

- (1) Let M, N, Q be kG-modules. Let Q be projective. Suppose that $\varphi : Q \to M$ is a surjective kG-map. Show that any map from N to M that factors through a projective factors through φ .
- (2) Let U_1 , U_2 be non-projective indecomposables over kG, and V_1 , V_2 the corresponding non-projective indecomposables over kL.
 - (a) Show that $\varphi \in \operatorname{Hom}_{kG}(U_1, U_2)$ factors through a projective if φ does when considered as an element of $\operatorname{Hom}_{kL}((U_1)_L, (U_2)_L)$.
 - (b) Let *i* be the homomorphism of V_1 onto a direct summand of U_1 and let π be a homomorphism of U_2 onto V_2 with kernel a direct summand. If $\varphi \in \operatorname{Hom}_{kG}(U_1, U_2)$ then $\pi \varphi i \in \operatorname{Hom}_{kL}(V_1, V_2)$. Prove that the map sending φ to $\pi \varphi i$ induces an isomorphism of $\overline{\operatorname{Hom}}_{kG}(U_1, U_2)$ onto $\overline{\operatorname{Hom}}_{kL}(V_1, V_2)$.