TUTORIAL SHEET 17

BRAUER'S THEOREM ON NUMBER OF SIMPLE kG-MODULES

Let p be a prime and $q = p^r$ for $r \ge 1$ an integer. Let k be a field, algebraically closed of characteristic p. Let G be a finite group and kG the group ring of G with coefficients in k. Let V denote the defining representation of SL(2, k) and V_n denote the symmetric n^{th} power of V.

- (1) Show directly, without using Brauer's theorem, that if G is cyclic of order $n = p^e r$ where (r, p) = 1, then there are exactly r inequivalent simple kG-modules.
- (2) Show that V_p is not a simple module for SL(2, p). (In fact, it is not a simple module even for SL(2, k), and so not for SL(2, q) no matter what q is.)
- (3) List the dimensions of the simple kG-modules for G = SL(2, q) and $q = 5^2$.
- (4) Let p = 3 and G = SL(2, p). Find a composition series for V_3 .
- (5) Let T = [kG, kG] (as in the proof of Brauer's theorem). Show the following:
 (a) (x + y)^p ≡ x^p + y^p mod T for x and y in kG;
 - (b) $x^p \in T$ for $x \in T$;
 - (c) $(x+y)^{p^e} \equiv x^{p^e} + y^{p^e} \mod T$ for x and y in kG.