TUTORIAL SHEET 17

BRAUER'S THEOREM ON NUMBER OF SIMPLE $k G$-MODULES

Let p be a prime and $q=p^{r}$ for $r \geq 1$ an integer. Let k be a field, algebraically closed of characteristic p. Let G be a finite group and $k G$ the group ring of G with coefficients in k. Let V denote the defining representation of $\operatorname{SL}(2, k)$ and V_{n} denote the symmetric $n^{\text {th }}$ power of V.
(1) Show directly, without using Brauer's theorem, that if G is cyclic of order $n=p^{e} r$ where $(r, p)=1$, then there are exactly r inequivalent simple $k G$ modules.
(2) Show that V_{p} is not a simple module for $\mathrm{SL}(2, p)$. (In fact, it is not a simple module even for $\operatorname{SL}(2, k)$, and so not for $\operatorname{SL}(2, q)$ no matter what q is.)
(3) List the dimensions of the simple $k G$-modules for $G=\operatorname{SL}(2, q)$ and $q=5^{2}$.
(4) Let $p=3$ and $G=\mathrm{SL}(2, p)$. Find a composition series for V_{3}.
(5) Let $T=[k G, k G]$ (as in the proof of Brauer's theorem). Show the following:
(a) $(x+y)^{p} \equiv x^{p}+y^{p} \bmod T$ for x and y in $k G$;
(b) $x^{p} \in T$ for $x \in T$;
(c) $(x+y)^{p^{e}} \equiv x^{p^{e}}+y^{p^{e}} \bmod T$ for x and y in $k G$.

