TUTORIAL SHEET 13

Let p be a prime and \mathbb{F}_{q} the finite field with $q=p^{r}$ elements. We outline a proof that there are $q^{n-1}(q-1) p$-regular conjugacy classes in the group $G=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ of invertible $n \times n$ matrices with entries in \mathbb{F}_{q}.

The relevance for representation theory of the above is that as a consequence there are $q^{n-1}(q-1)$ isomorphism classes of irreducible representations of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ over an algebraically closed field of characteristic p.

1. p-REGULARITY IS SEMISIMPLICITY

Let $g=s u$ be the Jordan decomposition (Exercise 3 of Tutorial 6) of an element g of G. Evidently the class of g is p-regular if and only if $u=1$. Since s has order prime to p, it is semisimple (i.e., it is diagonalizable over the algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q}). Thus p-regular elements are semisimple.

Conversely semisimple elements are p-regular. Indeed, any invertible diagonal matrix over $\overline{\mathbb{F}}_{q}$ has order prime to p (for every non-zero element of $\overline{\mathbb{F}}_{q}$ has order prime to p).

Thus p-regular conjugacy classes are the same as semisimple conjugacy classes.

2. SEMISIMPLE CLASSES AND CHARACTERISTIC POLYNOMIALS

For $g \in G$, let C_{g} denote its characteristic polynomial. Each C_{g} has the following properties:

- it is monic of degree n;
- it has coefficients in \mathbb{F}_{q};
- the constant term is non-zero.

Let \mathfrak{C} be the set of polynomials with these properties. The cardinality of \mathfrak{C} is clearly $q^{n-1}(q-1)$. And each element of \mathfrak{C} occurs as C_{g} for some $g \in G$ (think of the companion matrix). Since C_{g} is an invariant of the conjugacy class of g, the association $g \mapsto C_{g}$ gives rise to a map onto \mathfrak{C} from the set of conjugacy classes of G.

We will now argue that when restricted to semisimple conjugacy classes the above association is a bijection. If $g=s u$ be the Jordan decomposition, then $C_{g}=C_{s}$, so the restricted association is a surjection. On the other hand, if two semisimple matrices have the same characteristic polynomial, then they are conjugate (since they are conjugate on passing to $\overline{\mathbb{F}}_{q}$), and we are done.

