TUTORIAL SHEET 13

Let p be a prime and \mathbb{F}_q the finite field with $q = p^r$ elements. We outline a proof that there are $q^{n-1}(q-1)$ *p*-regular conjugacy classes in the group $G = \operatorname{GL}_n(\mathbb{F}_q)$ of invertible $n \times n$ matrices with entries in \mathbb{F}_q .

The relevance for representation theory of the above is that as a consequence there are $q^{n-1}(q-1)$ isomorphism classes of irreducible representations of $\operatorname{GL}_n(\mathbb{F}_q)$ over an algebraically closed field of characteristic p.

1. *p*-regularity is semisimplicity

Let g = su be the Jordan decomposition (Exercise 3 of Tutorial 6) of an element g of G. Evidently the class of g is p-regular if and only if u = 1. Since s has order prime to p, it is semisimple (i.e., it is diagonalizable over the algebraic closure $\overline{\mathbb{F}}_q$ of \mathbb{F}_q). Thus p-regular elements are semisimple.

Conversely semisimple elements are *p*-regular. Indeed, any invertible diagonal matrix over $\overline{\mathbb{F}}_q$ has order prime to *p* (for every non-zero element of $\overline{\mathbb{F}}_q$ has order prime to *p*).

Thus *p*-regular conjugacy classes are the same as semisimple conjugacy classes.

2. Semisimple classes and characteristic polynomials

For $g \in G$, let C_g denote its characteristic polynomial. Each C_g has the following properties:

- it is monic of degree n;
- it has coefficients in \mathbb{F}_q ;
- the constant term is non-zero.

Let \mathfrak{C} be the set of polynomials with these properties. The cardinality of \mathfrak{C} is clearly $q^{n-1}(q-1)$. And each element of \mathfrak{C} occurs as C_g for some $g \in G$ (think of the companion matrix). Since C_g is an invariant of the conjugacy class of g, the association $g \mapsto C_g$ gives rise to a map onto \mathfrak{C} from the set of conjugacy classes of G.

We will now argue that when restricted to semisimple conjugacy classes the above association is a bijection. If g = su be the Jordan decomposition, then $C_g = C_s$, so the restricted association is a surjection. On the other hand, if two semisimple matrices have the same characteristic polynomial, then they are conjugate (since they are conjugate on passing to $\overline{\mathbb{F}}_q$), and we are done.