TUTORIAL SHEET 12 SUNDRY ALGEBRAIC PRELIMINARIES

Let A be a ring (with identity as always, but with no further condition except any that is explicitly specified).

Essential surjections

Consider the following property of an A-linear map of A-modules:
$\left(^{*}\right)$ the image of every proper submodule is proper
Observe that the surjectivity of a map amounts to the pre-image of every proper submodule being proper. Surjections satisfying $\left({ }^{*}\right)$ are called essential surjections. A surjection $f: M \rightarrow N$ is essential if its kernel K has the property that $M^{\prime}+K=$ M for a submodule M^{\prime} of M implies $M^{\prime}=M$. An essential surjection that splits is an isomorphism.

Let f and g be A-linear maps and $f g$ their composition (g followed by f). Then

- If $f g$ is surjective, so is f.
- If $f g$ satisfies $\left(^{*}\right)$, so does g.
- If f and g satisfy $\left(^{*}\right)$, so does $f g$.
- If f and g are surjective, so if $f g$.
- If $f g$ satisfies $\left(^{*}\right)$ and g is surjective, then f satisfies $\left(^{*}\right)$.
- If $f g$ is surjective and f satisfies $\left(^{*}\right)$, then g is surjective.

Projective covers
A projective cover of an A-module M is a projective A-module P along with an A-linear essential surjection $P \rightarrow M$.

- Any two projective covers of a given module are isomorphic.
- If P is finitely generated projective module, then $P \rightarrow P / \mathfrak{R a d} P$ is a projective cover of $P / \mathfrak{R a d} P$.
- A finite direct sum of essential surjections is an essential surjection. (Hint: Express the direct sum of two essential surjections as a composition of two essential surjections.)

EsSENTIAL INJECTIONS

Consider the following property of an A-linear map of A-modules:
(\dagger) the pre-image of every non-zero submodule is non-zero
Observe that the injectivity of a map amounts to the image of every non-zero submodule being non-zero. Injections satisfying (\dagger) are called essential injections. An essential injection that splits is an isomorphism.

InJECTIVE HULLS

An injective hull of an A-module M is an injective A-module I along with an A-linear essential injection $M \hookrightarrow I$.

- Any two injective hulls of a given module are isomorphic.

