TUTORIAL SHEET 11
 RADICALS

Let A be a ring and M an A-module. Let $\mathfrak{R a d} M$ denote the radical of M, and A_{M} the ring of homotheties of M (as an A-module).
(1) Let Z be the centre of A. Show that $Z \cap \mathfrak{R a d} A$ is contained in $\mathfrak{R a d} Z$.
(2) Show that $\mathfrak{R a d} A$ does not contain any idempotent other than 0,1 .
(3) If $\mathfrak{R a d} M=0$, then $\mathfrak{R a d} A_{M}=0$.
(4) If $A / \mathfrak{R a d} A$ is semisimple, then $\mathfrak{R a d} M=(\mathfrak{R a d} A) M$.

Let p be a prime, k a field of characteristic p, and G a finite group. Denote by $k G$ the group ring of G over k. As always, $\mathfrak{R a d}$ is used to denote radical.
(1) Let $T_{n}(k)$ denote the ring of $n \times n$ upper triangular matrices with entries in a field k. Compute its radical.
(2) Suppose p divides the order of G. Let σ denote the element $\sum_{g \in G} g$ in $k G$. Then $k \sigma$ is a two sided nilpotent ideal of $k G$.
(3) For G a p-group, $\Delta(G)=\mathfrak{R a d} G$, where $\Delta(G)$ is the kernel of the map $k G \rightarrow k$ defining the trivial representation.
(4) If N is a normal subgroup of G, then $\mathfrak{R a d}(k N)=k N \cap \mathfrak{R a d}(k G)$.
(5) If N is a normal subgroup of G and T a simple $k N$-module, then there exists a simple $k G$-module S such that T is a direct summand of $\left.S\right|_{N}$.

