TUTORIAL SHEET 11 RADICALS

Let A be a ring and M an A-module. Let $\mathfrak{Rad} M$ denote the radical of M, and A_M the ring of homotheties of M (as an A-module).

- (1) Let Z be the centre of A. Show that $Z \cap \mathfrak{Rad} A$ is contained in $\mathfrak{Rad} Z$.
- (2) Show that $\mathfrak{Rad} A$ does not contain any idempotent other than 0, 1.
- (3) If $\mathfrak{Rad} M = 0$, then $\mathfrak{Rad} A_M = 0$.
- (4) If $A / \Re a \partial A$ is semisimple, then $\Re a \partial M = (\Re a \partial A)M$.

Let p be a prime, k a field of characteristic p, and G a finite group. Denote by kG the group ring of G over k. As always, $\Re \mathfrak{ad}$ is used to denote radical.

- (1) Let $T_n(k)$ denote the ring of $n \times n$ upper triangular matrices with entries in a field k. Compute its radical.
- (2) Suppose p divides the order of G. Let σ denote the element $\sum_{g \in G} g$ in kG. Then $k\sigma$ is a two sided nilpotent ideal of kG.
- (3) For G a p-group, $\Delta(G) = \mathfrak{Rad} G$, where $\Delta(G)$ is the kernel of the map $kG \to k$ defining the trivial representation.
- (4) If N is a normal subgroup of G, then $\Re \mathfrak{ad}(kN) = kN \cap \Re \mathfrak{ad}(kG)$.
- (5) If N is a normal subgroup of G and T a simple kN-module, then there exists a simple kG-module S such that T is a direct summand of $S|_N$.