
PREREQUISITE FOR MODULAR REPRESENTATION THEORY

ANUPAM SINGH

1. Modules of Interest

We denote A or R for a ring (not necessarily commutative) with 1. All modules are left module
and typically denoted by symbols V and M . We always consider finite group typically denoted as
G.

Example 1.1 (Group Algebra). In this workshop we are going to worry about the following ring:
Let k be a field and G be a finite group. We denote kG for the group algebra of G over the field k.
This is a finite dimensional vector space over k. We will study structure theory of modules over this
ring.

Exercise 1.2. Identify the group algebra in the case G is a cyclic group, S3 or Q8 over fields Q, R,
C.

Example 1.3. Let D be a division ring (skew field). Then Mn(D) is a ring.

A nonzero A-module M is called simple (or irreducible) if it contains no proper nonzero
submodule. An A-module M is called cyclic with generator m if M = Rm for some m ∈M .

Exercise 1.4. Find out all simple modules over rings F , Z and F [X] where F is a field.

Exercise 1.5. Let V be a vector space over a field F . Prove that V is a simple EndF (V )-module.

Exercise 1.6 (Schur’s Lemma). Let M be a simple module and let φ : M →M be a homomorphism.
Prove that either φ = 0 or φ is invertible.

Proposition 1.7. For an A-module M , the following are equivalent.

(1) M is the sum of a family of simple submodules.
(2) M is the direct sum of a family of simple submodules.
(3) Every submodule N of M is a direct summand.

An A module M satisfying one of the above equivalent conditions is called semisimple.

Lemma 1.8. Let M =
∑
i∈I Ei, Ei simple. Then there exists a subset J ⊂ I such that E = ⊕i∈JEi.

Lemma 1.9. Let M 6= 0 be a module with property that every submodule is direct summand. Then
every submodule of M contains a simple submodule.

Example 1.10. Every module over a field F or a division ring D is semisimple.

Exercise 1.11. Find out when a cyclic module over rings Z or F [X] is semisimple.

Example 1.12. kG over itself is semisimple if and only if |G| 6= 0 in k.

Exercise 1.13. Every submodule and quotient module of a semisimple module is again semisimple.
1



2 ANUPAM SINGH

An A-module V is called decomposable if V = V1 ⊕ V2 where Vi’s are nonzero submodules. A
nonzero module V is called indecomposable if it is not decomposable.

Exercise 1.14. (1) All simple modules are indecomposable.
(2) Over A = Z the modules V = Z/prZ where p is a prime, are indecomposable modules.

However it is not simple for r ≥ 2. Classify when Z/nZ is an indecomposable Z-module.
(3) Consider the group algebra A of cyclic group of order p over k = Z/pZ. Then A over itself is

indecomposable but not simple. It is true in general that the group ring of a p-groups over
a field of characteristic p is indecomposable.

Exercise 1.15. Let V be a finite dimensional vector space over a field k. Let T ∈ GL(V ). We
make V a k[X]-module where X.v := T (v). We denote this module by VT .

(1) Let T, S ∈ GL(V ). Prove that VT ∼= VS as k[X]-module if and only if T and S are conjugate
in GL(V ).

(2) Determine when V is a simple, semisimple, indecomposable and cyclic module. The answer
should depend on T only.

2. Chain Conditions on Modules

Let V be an A-module. Then V is called Artinian if it satisfies the descending chain condition
(DCC), i.e., every descending chain of submodules (V ⊃ V1 ⊃ V2 ⊃ · · · ) has finite length (i.e. after
a fixed N all Vi are equal).

The module V is called Noetherian if it satisfies ascending chain condition (ACC), i.e., if every
ascending chain of submodules (0 ⊂ V1 ⊂ V2 ⊂ · · · ) has finite length (i.e. after a fixed N all Vi are
equal).

Example 2.1. (1) Every module with finitely many elements over a ring satisfies both ACC
and DCC, for example Z/nZ.

(2) Z over itself doesn’t satisfy DCC but it satisfies ACC.
(3) Consider V = (Q/Z)p (all elements of which order is a power of p) as a Z module. Then V

has a unique submodule Vn of order pn and V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · does not satisfy
ACC. However it satisfies DCC.

(4) k[X] over itself satisfies ACC but not DCC.
(5) The ring k[x1, x2, . . .] in infinite variables doesn’t satisfy either chain conditions.

Exercise 2.2. What about modules over kG?

Exercise 2.3. Determine whether simple (and semisimple) modules over a ring are Artinian or
Noetherian?

The following lemmas give equivalent ways of defining Artinian and Noetherian of which proof is
left as an exercise.

Lemma 2.4 (Artinian Module). Let V be an A module. Then the following are equivalent:

(1) V is Artinian.
(2) Every nonempty collection of submodules has a minimal element.

Lemma 2.5 (Noetherian Module). Let V be an A module. Then the following are equivalent:

(1) V is Noetherian.
(2) Every nonempty collection of submodules has a maximal element.
(3) Every submodule of V is finitely generated.
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Corollary 2.6. Let 0→ V ′ → V → V ′′ → 0 be an exact sequence of A-modules. Then

(1) V is Artinian if and only if V ′ and V ′′ are Artinian.
(2) V is Noetherian if and only if V ′ and V ′′ are Noetherian.

A ring A is called Artinian or Noetherian if V = A is Artinian or Noetherian (left) A-module
respectively.

Example 2.7. (1) A field k is Artinian as well as Noetherian.
(2) The ring Z/nZ is also both Artinian and Noetherian.
(3) The ring Z is Noetherian but not Artinian.
(4) The algebra kG is Artinian and Noetherian both.

Proposition 2.8. Let A be a Noetherian (resp. Artinian) ring. Then

(1) Finite direct sum of Noetherian modules is Noetherian.
(2) Every finitely generated module V over A is Noetherian (resp. Artinian).
(3) For an ideal I of A the ring A/I is Noetherian (resp. Artinian).

Theorem 2.9. An Artinian ring is Noetherian.

3. Composition Series

A chain of submodules of a module V is a finite sequence (Vi)0≤i≤n of submodules of V such
that

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V.

The modules Vi+1/Vi are the factor of the chain and n is called the length. A chain is called without
repetition if 0 is not a factor. A chain (Uj) is a refinement of (Wi) if 0 = U0 ⊆ · · · ⊆ Um is obtained
from 0 = W0 ⊆ · · · ⊆Wn by insertion of possibly some extra modules, i.e., it at least keeps all of the
Wi’s. A chain of submodules (Vi) is called a composition series if it is a chain without repetition
and every proper refinement has repetition. Two chains are called equivalent if the factors of the
chains (repetition allowed) are isomorphic upto some reordering.

Theorem 3.1. Let V be an A module.

(1) (Schreier) Any two chains of submodules of V has equivalent refinements.
(2) (Jordan-Hölder) Any two composition series are equivalent.

Proof. Step 1 : Consider two chains 0 = W0 ⊆W1 ⊆ · · · ⊆Wm = V and 0 = U0 ⊆ U1 ⊆ · · · ⊆ Un =
V and define,

Wi,j = Wi + (Wi+1 ∩ Uj), Uj,i = Uj + (Uj+1 ∩Wi).

Step 2: (Wi,j) and (Uj,i) are refinements of (Wi) and (Uj) respectively. Also note that Wi,j+1 =
Wi,j + (Wi+1 ∩ Uj+1) and a similar relation for Uj,i+1. Now use isomorphism theorem to get the
following:

Wi,j+1

Wi,j
=

Wi+1 ∩ Uj+1

(Wi+1 ∩ Uj+1) ∩ [Wi + (Wi+1 ∩ Uj)]
Uj,i+1

Wj,i
=

Wi+1 ∩ Uj+1

(Wi+1 ∩ Uj+1) ∩ [Uj + (Uj+1 ∩Wi)]
.

Step 3 : Prove that the denominators of both in the above equations are same. �

Proposition 3.2. Let V be an A module. Then V has a composition series if and only if V is
Artinian as well as Noetherian.
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Proof. If V has a composition series no chain can have a larger length hence V is Artinian as well
as Noetherian.

Conversely, suppose V is both Artinian and Noetherian. Then V has a minimal nonzero sub-
module (since Artinian), say V1. Now V/V1 is again Artinian and hence has a minimal submodule
V2/V1. This way we form a chain:

0 ⊂ V1 ⊂ V2 ⊂ · · ·
which has to end in finitely many steps since V is also Noetherian. �

Let V be a module which has a composition series. The length of module is the length of
composition series.

Exercise 3.3. Let V be a semisimple A module. Then prove that the following are equivalent:

(1) V is a direct sum of finitely many simple modules.
(2) V is Artinian.
(3) V is Noetherian.
(4) V has a composition series.

4. Radical and Socle

In this section we assume A is an Artinian ring and V is a finitely generated A-module. The
radical of A, denoted as rad(A), consists of elements of A which annihilate each simple A-module
equivalently each semisimple A-module.

Exercise 4.1. rad(A) is an ideal (note that A need not be commutative).

Proposition 4.2. The radical of A is equal to each of the following:

(1) the smallest submodule of A whose corresponding quotient is semisimple;
(2) the intersection of all the maximal submodules of A;
(3) the largest nilpotent ideal of A.

The radical of an A-module V denoted as rad(V ) is the intersection of all maximal submodules
of V .

Proposition 4.3. The following are equal to rad(V ):

(1) rad(A)V ;
(2) the smallest submodule of V with semisimple quotient.

Exercise 4.4. (1) If V is semisimple, rad(V ) = 0.
(2) If V is Artinian and rad(V ) = 0 then V is semisimple.

For an A-module V we define rad2(V ) := rad(rad(V )) = rad(A)(rad(A)V ) = (radA)2V . Induc-
tively we define radn(V ) = rad(radn−1V ). The sequence of modules:

V = rad0(V ) ⊇ rad1(V ) ⊇ rad2(V ) ⊇ · · ·
is called the radical series of V .

The socle of an A-module V , denoted as soc(V ), is the sum of all its simple (irreducible) sub-
modules. If V has no simple submodule, its socle is (0).

Proposition 4.5. The following are equal:

(1) soc(V );
(2) {v ∈ V | rad(A)v = 0};
(3) the largest semisimple submodule of V .
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Now we look at V/soc(V ) and denote its socale by soc2(V )/soc(V ). Inductively we define socn(V )
and get a series:

0 = soc0(V ) ⊆ soc1(V ) = soc(V ) ⊆ soc2(V ) ⊆ · · ·
called socle series.

5. Krull-Schmidt Unique Decomposition Theorem

Suppose V is a direct sum of indecomposables, i.e., V = V1 ⊕ V2 ⊕ · · · ⊕ Vn. Then it gives
rise to certain elements πi ∈ EndA(V ) called projections with property 1 = π1 + π2 + · · · + πn,
π2
i = πi, πiπj = πjπi and πi(V ) = Vi ⊂ V . The following proposition guarantees existence of such

elements.

Proposition 5.1. If V is either Artinian or Noetherian then V is a finite direct sum of indecom-
posable modules.

Proof. Let V be Noetherian. Consider the collection F consisting of submodules W of V such that
V/W is not a finite direct sum of indecomposables. If F is nonempty then by Noetherian property
we have maximal element in F , say U . We have, V/U is not a finite direct sum of indecomposables
and hence not indecomposable. Let V/U = V1/U ⊕ V2/U with nontrivial components. Then by
maximality of U , we get V/V1 ∼= V2/U and V/V2 ∼= V1/U are finite direct sum of indecomposables
and hence so is V/U ∼= V/V1⊕V/V2, a contradiction. Thus the collection F is empty and V ∼= V/{0}
is a finite direct sum of indecomposables.

Now let us assume that V is Artinian. Let C be the collection of all nonzero submodules of
V which is not a finite direct sum of indecomposable submodules. If C is nonempty it will have
a minimal element (as V is Artinian), say W . Clearly W 6= 0 and in not indecomposable hence
W = W1 ⊕W2 where both W1 and W2 are nonzero. As W is minimal W1 and W2 both do not
belong to C and are finite direct sum of indecomposable and hence so is W , a contradiction. This
implies C is empty and hence V is a finite direct sum of indecomposables. �

Let A be a finite dimensional algebra over a field k. Then A is said to be local if every element
of A is either nilpotent or invertible.

Exercise 5.2. Prove that A is local if and only if A/rad(A) ∼= k. Also the set of all nilpotent
elements form a two-sided ideal.

Proof. Let I be the set of all nilpotent elements. Let u ∈ I and a ∈ A. We show that ua and au
belong to I. Let n be the smallest integer such that un = 0. On contrary let us assume ua is not
nilpotent hence they are invertible (as they are in the local ring A). Hence there exists b ∈ A such
that uab = 1. But then un−1 = un−1.1 = un−1.uab = 0 which contradicts that n is smallest. Hence
ua and au are nilpotent and belong to I.

Now let u, v ∈ I. Then u + v ∈ A and are either nilpotent or invertible. Suppose they were
invertible then there exists a ∈ A such that (u+ v)a = 1, i.e., ua = 1− va. But ua is nilpotent and
1− va is invertible (as it is 1 minus some nilpotent) which is a contradiction as both are equal. �

Now we are going to give different situations where EndA(V ) is local. We will use this to prove
the Krull-Schmidt theorem.

Theorem 5.3. (1) Let A be a finite dimensional k algebra. The A-module V is indecomposable
if and only if EndA(V ) is local.

(2) Let M be a module of finite length, i.e, Artinian and Noetherian both and suppose it is
indecomposable. Then EndA(V ) is local.
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(3) Let A be a Noetherian ring and A/rad(A) is Artinian and also assume that A is complete on
Modules. Let V be a finitely generated indecomposable A-module. Then EndA(V ) is local.

Proof. If V is decomposable we can write V = V1 ⊕ V2 and take the projection π. Then we have
π2 = π where π is neither nilpotent nor unit.

Conversely, let ρ ∈ EndA(V ) is neither nilpotent nor invertible. Let χ(x) be the characteristic
polynomial of ρ. Then χ(x) = xn + an−1x

n−1 + · · · + a0 has a0 = 0 and is not of the form xn,
i.e., χ(x) = xrf(x) where f(0) 6= 0. This nontrivial factorization of the characteristic polynomial
provides a decomposition of V which is ρ invariant.

For the proof of part 2 see Curtis-Reiner or the exercise 5.6 and for the proof of part 3 see Dornhoff
part B. �

Theorem 5.4 (Krull-Schmidt Theorem). Let V be an A-module where A is a finite dimensional k
algebra (or satisfying one of the conditions in the above theorem so that EndA(V ) is local). Sup-
pose V = U1 ⊕ · · · ⊕ Ur as well as M = V1 ⊕ · · · ⊕ Vs are two decompositions into direct sum of
indecomposable modules then r = s and after suitable renumbering, Ui ∼= Vi for all i.

Proof. We prove it by induction. Let πi be the projections corresponding to the first decomposition
and ρj for the second. We also have I =

∑
πi =

∑
ρj hence π1 = I.π1 = π1ρ1 + · · · + π1ρs. The

restriction of π1ρj to U1 is either nilpotent or invertible. If all of the π1ρj are nilpotent they belong
to the ideal in EndA(U1) consisting of all nilpotent elements and hence so is their sum, i.e., π1
restricted to U1. But that is identity map on U1 which is not nilpotent. Hence one of the π1ρj is
invertible. After renumbering of Vj ’s we may assume π1ρ1 is invertible restricted to U1.

We look at the restricted maps as follows: U1
ρ1→ V1

π1→ U1. Let W = Im(ρ1) and K = ker(π1).
Since π1ρ1 is an isomorphism W is isomorphic to U1. We claim that K = 0. For this first we
show that V1 = W ⊕K. Let v ∈ V1 then there exists w ∈ W such that π1(v) = π1(w) and hence
v − w ∈ K. Thus v = w + (v − w) ∈ W + K. Also if v ∈ W ∩K then π1(v) = π1(w) as π1 is an
isomorphism but since v ∈ K as well we get v = 0. This proves V1 = W ⊕ K and since π1 is an
isomorphism from W to U1 we get K = 0.

Now we claim that U1 ∩ (V2 ⊕ · · · ⊕ Vs) = 0. This follows from dimension count. Hence we have
proved that V1 and U1 are isomorphism and then by looking at M/U1 we can use induction. �

Remark 5.5. (1) There are possibly more indecomposable modules than simple modules over
a ring.

(2) In the case A = kG if |G| 6= 0 in k all modules are semisimple, i.e., direct sum of simples.
However in the other case it is not so but still we have Krull-Schmidt decomposition.

Exercise 5.6. The following set of exercises provide proof for the part 2 in the theorem 5.3.

(1) A surjective endomorphism of a Noetherian module is bijective. (Hint: Consider the chain
0 ⊆ ker(u) ⊆ ker(u2) ⊆ · · · which stabilises at stage n. Then prove that ker(un)∩Im(un) =
0. Prove that un is injective and hence so is u).

(2) An injective endomorphism of an Artinian module M is bijective. (Hint: Consider the chain
M ⊇ Im(u) ⊇ Im(u2) ⊇ · · · which stabilises at stage n. Prove that M = ker(un)+Im(un)).

(3) (Fitting Lemma :) Let M be a module which is Artinian and Noetherian both. Let
u ∈ EndA(M). Prove that there exists n such that M = ker(un)⊕ Im(un).

(4) Let V be a module of finite length. Then V is indecomposable if and only if EndA(V ) is
local.



PREREQUISITE FOR MODULAR REPRESENTATION THEORY 7

6. Projective and Injective Modules

A module V isomorphic to A⊕ · · · ⊕ A is called a free module, i.e., there exists a subset X ⊂ V
such that every v ∈ V has unique expression of the form v = r1v1 + · · · + rnvn where ri ∈ A and
vi ∈ X.

Proposition 6.1 (Free Modules). An A-module V is free over a set X if and only if it satisfies the
following universal property: For any A-module M and set map φ : X → M there exists a unique
A-module homomorphism Φ: V →M such that Φ(v) = φ(v) for all v ∈ X.

Exercise 6.2 (Split exact sequence). The following are equivalent for a short exact sequence 0 →
L

φ→M
ψ→ N → 0 :

(1) there exists a homomorphism α : N →M such that ψα = id.
(2) there exists a homomorphism β : M → L such that βφ = id.
(3) there exists N ′ ⊂M such that M = φ(L)⊕N ′.

Exercise 6.3. (1) The functor HomA(P,−) is left exact, i.e., for any short exact sequence of A
modules

0→ L
ψ→M

φ→ N → 0

the sequence

0→ HomA(P,L)
ψ′

→ HomA(P,M)
φ′

→ HomA(P,N)

is also exact where ψ′ and φ′ are natural composition maps.
(2) The functor HomA(−, Q) is left exact, i.e., for any short exact sequence of A modules

0→ L
ψ→M

φ→ N → 0

the sequence

0→ HomA(N,Q)
φ′

→ HomA(M,Q)
ψ′

→ HomA(L,Q)

is also exact.

Proposition 6.4 (Projective Modules). Let P be an A-module. Then the following are equivalent:

(1) The functor HomA(P,−) is exact, i.e., for any short exact sequence of A modules

0→ L
ψ→M

φ→ N → 0

the sequence

0→ HomA(P,L)
ψ′

→ HomA(P,M)
φ′

→ HomA(P,N)→ 0

is also exact where ψ′ and φ′ are natural composition maps.

(2) For any M,N if sequence of A modules M
φ→ N → 0 is exact, then any homomorphism f

from P to N lifts to an A module homomorphism F from P to M .

P

f

��

F

~~}
}

}
}

M
φ // N // 0

(3) Every short exact sequence 0 → L → M → P → 0 splits, i.e., if P is a quotient of the A
module M then P is isomorphic to a direct summand of M .
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(4) P is a direct summand of a free A-module.

Proof. (1 ⇔ 2) : If we have ψ injective we always get ψ′ injective. And the surjectivity of φ′ is
equivalent to the statement 2.

(2⇒ 3) : Let us consider the exact sequence M → P → 0 and the identity map I : P → P . From
2 it lifts to a map from P to M which provides the splitting.

(3 ⇒ 4) : Every module is a quotient of a free module. Hence have P ∼= F/K where F is a free
module. This gives rise to the exact sequence 0 → K → F → P → 0 which splits by hypothesis 3.
Hence P ⊕K ∼= F .

(4⇒ 2) : Suppose P ⊕K ∼= F where F is free on a set X. Then we make the following diagram:

F ∼= P ⊕K

π

��
F ′

���
�

�
�

�
�

�
�

P

f

��
M

φ // N // 0

The map f ◦ π is defined on the free module F hence equivalent to being defined on X. We first
define F ′ on X by looking at the inverse under φ of f ◦ π of elements of X and uniquely extend it
to define F ′. The restriction of F ′ on P does the job. �

Any A-module P satisfying the above equivalent conditions is called projective.

Example 6.5. Let k be a field. Then any module V (which is a vector space) is a free module
hence projective. In fact, every free module over a ring A is projective.

Example 6.6. Non zero finite Abelian groups are not projective Z modules. A finitely generated
Z module is projective if and only if it is free.

Example 6.7. The Z-module Q/Z is not projective. As the exact sequence 0→ Z→ Q π→ Q/Z→ 0
does not split.

Example 6.8. In a Dedekind domain an ideal which is not principal is an example of a projective
module which is not free.

Exercise 6.9. Prove that Q is not a projective Z-module.

Exercise 6.10. Direct summands and direct sums of projectives are projectives.

Exercise 6.11. Every module is a quotient of a free module and hence also of a projective module.

Proposition 6.12 (Injective Modules). Let Q be an A-module. Then the following are equivalent:

(1) The functor HomA(−, Q) is exact, i.e., for any short exact sequence of A modules

0→ L
ψ→M

φ→ N → 0

the sequence

0→ HomA(N,Q)
φ′

→ HomA(M,Q)
ψ′

→ HomA(L,Q)→ 0

is also exact.
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(2) For any L,M if sequence of A modules 0 → L
φ→ M is exact, then any homomorphism f

from L to Q lifts to an A module homomorphism F from M to Q.

0 // L

f

��

φ // M

F~~~
~

~
~

Q

(3) Every short exact sequence 0 → Q → M → N → 0 splits, i.e., if Q is a submodule of the
A-module M then Q is a direct summand of M .

An A-module Q satisfying the above equivalent conditions is called injective.

Example 6.13. Z is not an injective Z-module since the exact sequence 0→ Z 2→ Z→ Z/2Z→ 0
is not split.

A Z-module R is said to be divisible if R = nR for all nonzero integers n.

Proposition 6.14. Let Q be an A module.

(1) Baer’s criterion : The module Q is injective if and only if for every left ideal I of A
and A-module homomorphism g : I → Q can be extended to an A-module homomorphism
G : A→ Q.

(2) If A is a PID then Q is injective if and only if rQ = Q for every nonzero r ∈ A. In
particular, a Z-module is injective if and only if it is divisible. When A is a PID, quotient
modules of injective A-modules are again injective.

Example 6.15. Q and Q/Z are injective Z-modules.

Example 6.16. Arbitrary direct products of injectives are injectives. Arbitrary direct sums of
injectives are injective over Noetherian rings.

Example 6.17. No non-zero finitely generated Z-module is injective.

Example 6.18. Let k be a field. Then every module over ring Mn(k) is injective as well as
projective.

Example 6.19. Let k be a field and G a finite group of order n. Suppose n 6= 0 in k. Then every
module over the group ring kG is injective as well as projective.

Example 6.20. A ring A is called semisimple if A is a semisimple module over itself. Every
module over a semisimple ring is injective as well as projective.

7. Relatively Projective Modules

We give another characterization of free module in a special case as follows:

Proposition 7.1. Let A be a finite dimensional k-algebra. An A-module U is free if and only if U
has a subspace X such that any linear transformation from X to any A-module V extends uniquely
to a module homomorphism of U to V .

Let B be a subring of A. We say that an A-module U is relatively B-free if there exists a
B-submodule X of U such that any B-homomorphism of X to any A-module V extends uniquely
to an A-homomorphism of U to V . The typical situation for this is A-a finite dimensional k-algebra
and B a subalgebra. Observe that if B = k, the trivial subalgebra, relatively free is same as free.
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Exercise 7.2. Let H be a subgroup of G. Take A = kG and B = kH. Prove that there exists a
relatively H-free kG-module. Let V be an H-module. Then IndGHV = kG ⊗kH V is relatively free
module.

Let B be a subring of A. We consider the situation when B is Noetherian and A is a finitely
generated B-module. A finitely generated A-module P is called relatively B-projective if for any
finitely generated A-modules M,N the exact sequence

0→M
φ→ N

ψ→ P → 0

splits whenever the restricted sequence

0→MB
φ→ NB

ψ→ PB → 0

(as B-modules) is a split exact sequence.

Exercise 7.3. Let A be finite dimensional algebra over a field k and B a subalgebra. Suppose A
is a finitely generated B-free module. Prove that P is projective if and only if PB is a projective
B-module and P is relatively B projective.

Exercise 7.4. Let A be a finite dimensional k-algebra and V a finitely generated A-module. Then
V is projective if and only if V is relatively k-projective.

Proposition 7.5 (Relatively Projective). Let A be a finite dimensional k algebra and B a subalgebra.
Let U be an A-module. Then the following are equivalent:

(1) HomA(U,−) is exact provided HomB(U,−) is so, i.e., if the sequence of A modules

0→ L
ψ→M

φ→ N → 0

is exact then the sequence

0→ HomA(U,L)
ψ′

→ HomA(U,M)
φ′

→ HomA(U,N)→ 0

is also exact provided it is so for B-module homomorphisms.

(2) For any M,N ; if the sequence of A modules M
φ→ N → 0 is exact, then any homomor-

phism f : U → N lifts to an A-module homomorphism F : U → M provided f lifts as B
homomorphism.

U

f

��

F

~~}
}

}
}

M
φ // N // 0

(3) U is relatively B-projective.
(4) U is a direct summand of a relatively B-free module.

Proof. It is easy to verify that 1 and 2 are equivalent. �

8. Grothendieck Group

Let A be a ring and F be a category of finitely generated left A-modules. The Grothendieck
group of F , denoted as K(F), is the Abelian group generated by [E] for each E ∈ F and the
relations are [E′] = [E] + [E′′] for each exact sequence o→ E → E′ → E′′ → 0 in F .
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Proposition 8.1 (Universal Property). For any Abelian group H, and a map φ : F → H which is
additive, i.e., φ(E′) = φ(E) + φ(E′′) for each exact sequence o → E → E′ → E′′ → 0, there exists
a unique Abelian group homomorphism f : K(F)→ H sending [E] to φ(E).

Example 8.2. Let G be a finite group and k a field of characteristic 0. We consider the category
of finite dimensional representations of G over k. Then the Grothendieck group in this case is the
Abelian group Rk(G) = Zχ1 ⊕ · · ·Zχr spanned by the irreducible characters. Moreover Rk(G) is a
ring.

Example 8.3. (1) Let L be a field extension of k. Then we have a ring homomrphism Rk(G)→
RL(G) given by V 7→ V ⊗k L.

(2) Let H be a subgroup of G. Then we have a ring homomorphism Ind : Rk(H) → Rk(G)
given by V 7→ IndGHV . The Frobenius reciprocity says that Res : Rk(G)→ Rk(H) is adjoint
of Ind.

Exercise 8.4. Let C be an algebraically closed field containing field k. Let G be a finite group.
Then we have Rk(G) ⊂ RC(G). We define subset R̄k(G) = {χ ∈ RC(G) | Im(χ) ⊂ k} then we have

Rk(G) ⊂ R̄k(G) ⊂ RC(G).

Then prove the following:

(1) Let Vi be distinct irreducible representations over k and χi be their characters. Then χi
form a basis of Rk(G) and are mutually orthogonal.

(2) A representation of G is realizable over k if and only if its character belong to Rk(G).
(3) Show that every representation over C is realizable over Q̄ and hence over a number field.

Hint : Look at [Se] chapter 12 Proposition 32 and 33.

Example 8.5. Let k be a field. For the category of finite dimensional vector spaces the Grothendieck
group is Z as any vector space is isomorphic to kn for some n ∈ N.

Exercise 8.6. Prove that the Grothendieck group for the category of finitely generated modules
over Z is again Z.

Exercise 8.7. Let G be a finite group and k be a field of characteristic 0. Consider the category
of finitely generated projective G- modules. What is the Grothendieck group. (Direct sum of
projectives is projective.)

Exercise 8.8 (Lagrange’s Theorem). Let P be a projective kG module and H a subgroup of G.
Then PH (as H-module) is a projective kH-module.

Exercise 8.9. Let k be an algebraically closed field of characteristic p. Prove that for the Abelian
group Z/nZ with n = par with (r, p) = 1 there are exactly r simple modules and n indecomposable
modules.

Hint : Use Jordan canonical form theory.

Exercise 8.10. Let k be an algebraically closed field of characteristic p. Prove that for a p-group
there is exactly 1 simple module.
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