PREREQUISITE FOR MODULAR REPRESENTATION THEORY

ANUPAM SINGH

1. Modules of Interest

We denote A or R for a ring (not necessarily commutative) with 1. All modules are left module and typically denoted by symbols V and M. We always consider finite group typically denoted as G.

Example 1.1 (Group Algebra). In this workshop we are going to worry about the following ring: Let k be a field and G be a finite group. We denote kG for the group algebra of G over the field k. This is a finite dimensional vector space over k. We will study structure theory of modules over this ring.

Exercise 1.2. Identify the group algebra in the case G is a cyclic group, S_3 or Q_8 over fields \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Example 1.3. Let D be a division ring (skew field). Then $M_n(D)$ is a ring.

A nonzero A-module M is called **simple (or irreducible)** if it contains no proper nonzero submodule. An A-module M is called **cyclic** with generator m if M = Rm for some $m \in M$.

Exercise 1.4. Find out all simple modules over rings F, \mathbb{Z} and F[X] where F is a field.

Exercise 1.5. Let V be a vector space over a field F. Prove that V is a simple $\operatorname{End}_F(V)$ -module.

Exercise 1.6 (Schur's Lemma). Let M be a simple module and let $\phi: M \to M$ be a homomorphism. Prove that either $\phi = 0$ or ϕ is invertible.

Proposition 1.7. For an A-module M, the following are equivalent.

- (1) M is the sum of a family of simple submodules.
- (2) M is the direct sum of a family of simple submodules.
- (3) Every submodule N of M is a direct summand.

An A module M satisfying one of the above equivalent conditions is called **semisimple**.

Lemma 1.8. Let $M = \sum_{i \in I} E_i$, E_i simple. Then there exists a subset $J \subset I$ such that $E = \bigoplus_{i \in J} E_i$.

Lemma 1.9. Let $M \neq 0$ be a module with property that every submodule is direct summand. Then every submodule of M contains a simple submodule.

Example 1.10. Every module over a field F or a division ring D is semisimple.

Exercise 1.11. Find out when a cyclic module over rings \mathbb{Z} or F[X] is semisimple.

Example 1.12. kG over itself is semisimple if and only if $|G| \neq 0$ in k.

Exercise 1.13. Every submodule and quotient module of a semisimple module is again semisimple.

An A-module V is called **decomposable** if $V = V_1 \oplus V_2$ where V_i 's are nonzero submodules. A nonzero module V is called **indecomposable** if it is not decomposable.

Exercise 1.14. (1) All simple modules are indecomposable.

- (2) Over $A = \mathbb{Z}$ the modules $V = \mathbb{Z}/p^r \mathbb{Z}$ where p is a prime, are indecomposable modules. However it is not simple for $r \ge 2$. Classify when $\mathbb{Z}/n\mathbb{Z}$ is an indecomposable \mathbb{Z} -module.
- (3) Consider the group algebra A of cyclic group of order p over $k = \mathbb{Z}/p\mathbb{Z}$. Then A over itself is indecomposable but not simple. It is true in general that the group ring of a p-groups over a field of characteristic p is indecomposable.

Exercise 1.15. Let V be a finite dimensional vector space over a field k. Let $T \in GL(V)$. We make V a k[X]-module where X.v := T(v). We denote this module by V_T .

- (1) Let $T, S \in GL(V)$. Prove that $V_T \cong V_S$ as k[X]-module if and only if T and S are conjugate in GL(V).
- (2) Determine when V is a simple, semisimple, indecomposable and cyclic module. The answer should depend on T only.

2. CHAIN CONDITIONS ON MODULES

Let V be an A-module. Then V is called **Artinian** if it satisfies the descending chain condition (DCC), i.e., every descending chain of submodules $(V \supset V_1 \supset V_2 \supset \cdots)$ has finite length (i.e. after a fixed N all V_i are equal).

The module V is called **Noetherian** if it satisfies ascending chain condition (ACC), i.e., if every ascending chain of submodules $(0 \subset V_1 \subset V_2 \subset \cdots)$ has finite length (i.e. after a fixed N all V_i are equal).

Example 2.1. (1) Every module with finitely many elements over a ring satisfies both ACC and DCC, for example $\mathbb{Z}/n\mathbb{Z}$.

- (2) \mathbb{Z} over itself doesn't satisfy DCC but it satisfies ACC.
- (3) Consider $V = (\mathbb{Q}/\mathbb{Z})_p$ (all elements of which order is a power of p) as a \mathbb{Z} module. Then V has a unique submodule V_n of order p^n and $V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n \subset \cdots$ does not satisfy ACC. However it satisfies DCC.
- (4) k[X] over itself satisfies ACC but not *DCC*.
- (5) The ring $k[x_1, x_2, \ldots]$ in infinite variables doesn't satisfy either chain conditions.

Exercise 2.2. What about modules over kG?

Exercise 2.3. Determine whether simple (and semisimple) modules over a ring are Artinian or Noetherian?

The following lemmas give equivalent ways of defining Artinian and Noetherian of which proof is left as an exercise.

Lemma 2.4 (Artinian Module). Let V be an A module. Then the following are equivalent:

- (1) V is Artinian.
- (2) Every nonempty collection of submodules has a minimal element.

Lemma 2.5 (Noetherian Module). Let V be an A module. Then the following are equivalent:

- (1) V is Noetherian.
- (2) Every nonempty collection of submodules has a maximal element.
- (3) Every submodule of V is finitely generated.

Corollary 2.6. Let $0 \to V' \to V \to V'' \to 0$ be an exact sequence of A-modules. Then

- (1) V is Artinian if and only if V' and V'' are Artinian.
- (2) V is Noetherian if and only if V' and V'' are Noetherian.

A ring A is called **Artinian or Noetherian** if V = A is Artinian or Noetherian (left) A-module respectively.

Example 2.7. (1) A field k is Artinian as well as Noetherian.

- (2) The ring $\mathbb{Z}/n\mathbb{Z}$ is also both Artinian and Noetherian.
- (3) The ring \mathbb{Z} is Noetherian but not Artinian.
- (4) The algebra kG is Artinian and Noetherian both.

Proposition 2.8. Let A be a Noetherian (resp. Artinian) ring. Then

- (1) Finite direct sum of Noetherian modules is Noetherian.
- (2) Every finitely generated module V over A is Noetherian (resp. Artinian).
- (3) For an ideal I of A the ring A/I is Noetherian (resp. Artinian).

Theorem 2.9. An Artinian ring is Noetherian.

3. Composition Series

A chain of submodules of a module V is a finite sequence $(V_i)_{0 \le i \le n}$ of submodules of V such that

$$0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = V.$$

The modules V_{i+1}/V_i are the factor of the chain and n is called the length. A chain is called without repetition if 0 is not a factor. A chain (U_j) is a refinement of (W_i) if $0 = U_0 \subseteq \cdots \subseteq U_m$ is obtained from $0 = W_0 \subseteq \cdots \subseteq W_n$ by insertion of possibly some extra modules, i.e., it at least keeps all of the W_i 's. A chain of submodules (V_i) is called a **composition series** if it is a chain without repetition and every proper refinement has repetition. Two chains are called **equivalent** if the factors of the chains (repetition allowed) are isomorphic up to some reordering.

Theorem 3.1. Let V be an A module.

- (1) (Schreier) Any two chains of submodules of V has equivalent refinements.
- (2) (Jordan-Hölder) Any two composition series are equivalent.

Proof. Step 1 : Consider two chains $0 = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_m = V$ and $0 = U_0 \subseteq U_1 \subseteq \cdots \subseteq U_n = V$ and define,

$$W_{i,j} = W_i + (W_{i+1} \cap U_j), \quad U_{j,i} = U_j + (U_{j+1} \cap W_i)$$

Step 2: $(W_{i,j})$ and $(U_{j,i})$ are refinements of (W_i) and (U_j) respectively. Also note that $W_{i,j+1} = W_{i,j} + (W_{i+1} \cap U_{j+1})$ and a similar relation for $U_{j,i+1}$. Now use isomorphism theorem to get the following:

$$\frac{W_{i,j+1}}{W_{i,j}} = \frac{W_{i+1} \cap U_{j+1}}{(W_{i+1} \cap U_{j+1}) \cap [W_i + (W_{i+1} \cap U_j)]}$$
$$\frac{U_{j,i+1}}{W_{j,i}} = \frac{W_{i+1} \cap U_{j+1}}{(W_{i+1} \cap U_{j+1}) \cap [U_j + (U_{j+1} \cap W_i)]}.$$

Step 3 : Prove that the denominators of both in the above equations are same.

Proposition 3.2. Let V be an A module. Then V has a composition series if and only if V is Artinian as well as Noetherian.

Proof. If V has a composition series no chain can have a larger length hence V is Artinian as well as Noetherian.

Conversely, suppose V is both Artinian and Noetherian. Then V has a minimal nonzero submodule (since Artinian), say V_1 . Now V/V_1 is again Artinian and hence has a minimal submodule V_2/V_1 . This way we form a chain:

$$0 \subset V_1 \subset V_2 \subset \cdots$$

which has to end in finitely many steps since V is also Noetherian.

Let V be a module which has a composition series. The **length of module** is the length of composition series.

Exercise 3.3. Let V be a semisimple A module. Then prove that the following are equivalent:

- (1) V is a direct sum of finitely many simple modules.
- (2) V is Artinian.
- (3) V is Noetherian.
- (4) V has a composition series.

4. Radical and Socle

In this section we assume A is an Artinian ring and V is a finitely generated A-module. The **radical** of A, denoted as rad(A), consists of elements of A which annihilate each simple A-module equivalently each semisimple A-module.

Exercise 4.1. rad(A) is an ideal (note that A need not be commutative).

Proposition 4.2. The radical of A is equal to each of the following:

(1) the smallest submodule of A whose corresponding quotient is semisimple;

- (2) the intersection of all the maximal submodules of A;
- (3) the largest nilpotent ideal of A.

The **radical** of an A-module V denoted as rad(V) is the intersection of all maximal submodules of V.

Proposition 4.3. The following are equal to rad(V):

(1) rad(A)V;

(2) the smallest submodule of V with semisimple quotient.

Exercise 4.4. (1) If V is semisimple, rad(V) = 0.

(2) If V is Artinian and rad(V) = 0 then V is semisimple.

For an A-module V we define $rad^{2}(V) := rad(rad(V)) = rad(A)(rad(A)V) = (radA)^{2}V$. Inductively we define $rad^{n}(V) = rad(rad^{n-1}V)$. The sequence of modules:

$$V = rad^{0}(V) \supseteq rad^{1}(V) \supseteq rad^{2}(V) \supseteq \cdots$$

is called the **radical series** of V.

The **socle** of an A-module V, denoted as soc(V), is the sum of all its simple (irreducible) submodules. If V has no simple submodule, its socle is (0).

Proposition 4.5. The following are equal:

(1) soc(V);

(2) $\{v \in V \mid rad(A)v = 0\};$

(3) the largest semisimple submodule of V.

Now we look at V/soc(V) and denote its socale by $soc^2(V)/soc(V)$. Inductively we define $soc^n(V)$ and get a series:

$$0 = soc^{0}(V) \subseteq soc^{1}(V) = soc(V) \subseteq soc^{2}(V) \subseteq \cdots$$

called **socle series**.

5. KRULL-SCHMIDT UNIQUE DECOMPOSITION THEOREM

Suppose V is a direct sum of indecomposables, i.e., $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$. Then it gives rise to certain elements $\pi_i \in \text{End}_A(V)$ called projections with property $1 = \pi_1 + \pi_2 + \cdots + \pi_n$, $\pi_i^2 = \pi_i, \pi_i \pi_j = \pi_j \pi_i$ and $\pi_i(V) = V_i \subset V$. The following proposition guarantees existence of such elements.

Proposition 5.1. If V is either Artinian or Noetherian then V is a finite direct sum of indecomposable modules.

Proof. Let V be Noetherian. Consider the collection \mathcal{F} consisting of submodules W of V such that V/W is not a finite direct sum of indecomposables. If \mathcal{F} is nonempty then by Noetherian property we have maximal element in \mathcal{F} , say U. We have, V/U is not a finite direct sum of indecomposables and hence not indecomposable. Let $V/U = V_1/U \oplus V_2/U$ with nontrivial components. Then by maximality of U, we get $V/V_1 \cong V_2/U$ and $V/V_2 \cong V_1/U$ are finite direct sum of indecomposables and hence so is $V/U \cong V/V_1 \oplus V/V_2$, a contradiction. Thus the collection \mathcal{F} is empty and $V \cong V/\{0\}$ is a finite direct sum of indecomposables.

Now let us assume that V is Artinian. Let \mathcal{C} be the collection of all nonzero submodules of V which is not a finite direct sum of indecomposable submodules. If \mathcal{C} is nonempty it will have a minimal element (as V is Artinian), say W. Clearly $W \neq 0$ and in not indecomposable hence $W = W_1 \oplus W_2$ where both W_1 and W_2 are nonzero. As W is minimal W_1 and W_2 both do not belong to \mathcal{C} and are finite direct sum of indecomposable and hence so is W, a contradiction. This implies \mathcal{C} is empty and hence V is a finite direct sum of indecomposables.

Let A be a finite dimensional algebra over a field k. Then A is said to be **local** if every element of A is either nilpotent or invertible.

Exercise 5.2. Prove that A is local if and only if $A/rad(A) \cong k$. Also the set of all nilpotent elements form a two-sided ideal.

Proof. Let I be the set of all nilpotent elements. Let $u \in I$ and $a \in A$. We show that ua and au belong to I. Let n be the smallest integer such that $u^n = 0$. On contrary let us assume ua is not nilpotent hence they are invertible (as they are in the local ring A). Hence there exists $b \in A$ such that uab = 1. But then $u^{n-1} = u^{n-1} \cdot 1 = u^{n-1} \cdot uab = 0$ which contradicts that n is smallest. Hence ua and au are nilpotent and belong to I.

Now let $u, v \in I$. Then $u + v \in A$ and are either nilpotent or invertible. Suppose they were invertible then there exists $a \in A$ such that (u + v)a = 1, i.e., ua = 1 - va. But ua is nilpotent and 1 - va is invertible (as it is 1 minus some nilpotent) which is a contradiction as both are equal. \Box

Now we are going to give different situations where $\operatorname{End}_A(V)$ is local. We will use this to prove the Krull-Schmidt theorem.

Theorem 5.3. (1) Let A be a finite dimensional k algebra. The A-module V is indecomposable if and only if $\operatorname{End}_A(V)$ is local.

(2) Let M be a module of finite length, i.e., Artinian and Noetherian both and suppose it is indecomposable. Then $\operatorname{End}_A(V)$ is local.

(3) Let A be a Noetherian ring and A/rad(A) is Artinian and also assume that A is complete on Modules. Let V be a finitely generated indecomposable A-module. Then $End_A(V)$ is local.

Proof. If V is decomposable we can write $V = V_1 \oplus V_2$ and take the projection π . Then we have $\pi^2 = \pi$ where π is neither nilpotent nor unit.

Conversely, let $\rho \in \text{End}_A(V)$ is neither nilpotent nor invertible. Let $\chi(x)$ be the characteristic polynomial of ρ . Then $\chi(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ has $a_0 = 0$ and is not of the form x^n , i.e., $\chi(x) = x^r f(x)$ where $f(0) \neq 0$. This nontrivial factorization of the characteristic polynomial provides a decomposition of V which is ρ invariant.

For the proof of part 2 see Curtis-Reiner or the exercise 5.6 and for the proof of part 3 see Dornhoff part B. $\hfill \square$

Theorem 5.4 (Krull-Schmidt Theorem). Let V be an A-module where A is a finite dimensional k algebra (or satisfying one of the conditions in the above theorem so that $\operatorname{End}_A(V)$ is local). Suppose $V = U_1 \oplus \cdots \oplus U_r$ as well as $M = V_1 \oplus \cdots \oplus V_s$ are two decompositions into direct sum of indecomposable modules then r = s and after suitable renumbering, $U_i \cong V_i$ for all i.

Proof. We prove it by induction. Let π_i be the projections corresponding to the first decomposition and ρ_j for the second. We also have $I = \sum \pi_i = \sum \rho_j$ hence $\pi_1 = I.\pi_1 = \pi_1\rho_1 + \cdots + \pi_1\rho_s$. The restriction of $\pi_1\rho_j$ to U_1 is either nilpotent or invertible. If all of the $\pi_1\rho_j$ are nilpotent they belong to the ideal in $\operatorname{End}_A(U_1)$ consisting of all nilpotent elements and hence so is their sum, i.e., π_1 restricted to U_1 . But that is identity map on U_1 which is not nilpotent. Hence one of the $\pi_1\rho_j$ is invertible. After renumbering of V_j 's we may assume $\pi_1\rho_1$ is invertible restricted to U_1 .

We look at the restricted maps as follows: $U_1 \stackrel{\rho_1}{\to} V_1 \stackrel{\pi_1}{\to} U_1$. Let $W = Im(\rho_1)$ and $K = ker(\pi_1)$. Since $\pi_1\rho_1$ is an isomorphism W is isomorphic to U_1 . We claim that K = 0. For this first we show that $V_1 = W \oplus K$. Let $v \in V_1$ then there exists $w \in W$ such that $\pi_1(v) = \pi_1(w)$ and hence $v - w \in K$. Thus $v = w + (v - w) \in W + K$. Also if $v \in W \cap K$ then $\pi_1(v) = \pi_1(w)$ as π_1 is an isomorphism but since $v \in K$ as well we get v = 0. This proves $V_1 = W \oplus K$ and since π_1 is an isomorphism from W to U_1 we get K = 0.

Now we claim that $U_1 \cap (V_2 \oplus \cdots \oplus V_s) = 0$. This follows from dimension count. Hence we have proved that V_1 and U_1 are isomorphism and then by looking at M/U_1 we can use induction.

- **Remark 5.5.** (1) There are possibly more indecomposable modules than simple modules over a ring.
 - (2) In the case A = kG if $|G| \neq 0$ in k all modules are semisimple, i.e., direct sum of simples. However in the other case it is not so but still we have Krull-Schmidt decomposition.

Exercise 5.6. The following set of exercises provide proof for the part 2 in the theorem 5.3.

- (1) A surjective endomorphism of a Noetherian module is bijective. (Hint: Consider the chain $0 \subseteq ker(u) \subseteq ker(u^2) \subseteq \cdots$ which stabilises at stage n. Then prove that $ker(u^n) \cap Im(u^n) = 0$. Prove that u^n is injective and hence so is u).
- (2) An injective endomorphism of an Artinian module M is bijective. (Hint: Consider the chain $M \supseteq Im(u) \supseteq Im(u^2) \supseteq \cdots$ which stabilises at stage n. Prove that $M = ker(u^n) + Im(u^n)$).
- (3) (Fitting Lemma :) Let M be a module which is Artinian and Noetherian both. Let $u \in \text{End}_A(M)$. Prove that there exists n such that $M = ker(u^n) \oplus Im(u^n)$.
- (4) Let V be a module of finite length. Then V is indecomposable if and only if $\operatorname{End}_A(V)$ is local.

6. PROJECTIVE AND INJECTIVE MODULES

A module V isomorphic to $A \oplus \cdots \oplus A$ is called a free module, i.e., there exists a subset $X \subset V$ such that every $v \in V$ has unique expression of the form $v = r_1v_1 + \cdots + r_nv_n$ where $r_i \in A$ and $v_i \in X$.

Proposition 6.1 (Free Modules). An A-module V is free over a set X if and only if it satisfies the following universal property: For any A-module M and set map $\phi: X \to M$ there exists a unique A-module homomorphism $\Phi: V \to M$ such that $\Phi(v) = \phi(v)$ for all $v \in X$.

Exercise 6.2 (Split exact sequence). The following are equivalent for a short exact sequence $0 \rightarrow L \xrightarrow{\phi} M \xrightarrow{\psi} N \rightarrow 0$:

- (1) there exists a homomorphism $\alpha \colon N \to M$ such that $\psi \alpha = id$.
- (2) there exists a homomorphism $\beta: M \to L$ such that $\beta \phi = id$.
- (3) there exists $N' \subset M$ such that $M = \phi(L) \oplus N'$.
- **Exercise 6.3.** (1) The functor $\operatorname{Hom}_A(P, -)$ is left exact, i.e., for any short exact sequence of A modules

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\phi} N \to 0$$

the sequence

$$0 \to \operatorname{Hom}_{A}(P,L) \xrightarrow{\psi'} \operatorname{Hom}_{A}(P,M) \xrightarrow{\phi'} \operatorname{Hom}_{A}(P,N)$$

- is also exact where ψ' and ϕ' are natural composition maps.
- (2) The functor $\operatorname{Hom}_A(-,Q)$ is left exact, i.e., for any short exact sequence of A modules

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\phi} N \to 0$$

the sequence

$$0 \to \operatorname{Hom}_{A}(N,Q) \xrightarrow{\phi'} \operatorname{Hom}_{A}(M,Q) \xrightarrow{\psi'} \operatorname{Hom}_{A}(L,Q)$$

is also exact.

Proposition 6.4 (Projective Modules). Let P be an A-module. Then the following are equivalent: (1) The functor $\operatorname{Hom}_A(P, -)$ is exact, i.e., for any short exact sequence of A modules

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\phi} N \to 0$$

the sequence

$$0 \to \operatorname{Hom}_{A}(P,L) \xrightarrow{\psi'} \operatorname{Hom}_{A}(P,M) \xrightarrow{\phi'} \operatorname{Hom}_{A}(P,N) \to 0$$

is also exact where ψ' and ϕ' are natural composition maps.

(2) For any M, N if sequence of A modules $M \xrightarrow{\phi} N \to 0$ is exact, then any homomorphism f from P to N lifts to an A module homomorphism F from P to M.

$$M \xrightarrow{F \swarrow} P \\ \downarrow f \\ \downarrow f \\ V \\ N \longrightarrow 0$$

(3) Every short exact sequence $0 \to L \to M \to P \to 0$ splits, i.e., if P is a quotient of the A module M then P is isomorphic to a direct summand of M.

(4) P is a direct summand of a free A-module.

Proof. $(1 \Leftrightarrow 2)$: If we have ψ injective we always get ψ' injective. And the surjectivity of ϕ' is equivalent to the statement 2.

 $(2 \Rightarrow 3)$: Let us consider the exact sequence $M \to P \to 0$ and the identity map $I: P \to P$. From 2 it lifts to a map from P to M which provides the splitting.

 $(3 \Rightarrow 4)$: Every module is a quotient of a free module. Hence have $P \cong F/K$ where F is a free module. This gives rise to the exact sequence $0 \to K \to F \to P \to 0$ which splits by hypothesis 3. Hence $P \oplus K \cong F$.

 $(4 \Rightarrow 2)$: Suppose $P \oplus K \cong F$ where F is free on a set X. Then we make the following diagram:

The map $f \circ \pi$ is defined on the free module F hence equivalent to being defined on X. We first define F' on X by looking at the inverse under ϕ of $f \circ \pi$ of elements of X and uniquely extend it to define F'. The restriction of F' on P does the job.

Any A-module P satisfying the above equivalent conditions is called **projective**.

Example 6.5. Let k be a field. Then any module V (which is a vector space) is a free module hence projective. In fact, every free module over a ring A is projective.

Example 6.6. Non zero finite Abelian groups are not projective \mathbb{Z} modules. A finitely generated \mathbb{Z} module is projective if and only if it is free.

Example 6.7. The \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is not projective. As the exact sequence $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ does not split.

Example 6.8. In a Dedekind domain an ideal which is not principal is an example of a projective module which is not free.

Exercise 6.9. Prove that \mathbb{Q} is not a projective \mathbb{Z} -module.

Exercise 6.10. Direct summands and direct sums of projectives are projectives.

Exercise 6.11. Every module is a quotient of a free module and hence also of a projective module.

Proposition 6.12 (Injective Modules). Let Q be an A-module. Then the following are equivalent:

(1) The functor $\operatorname{Hom}_A(-,Q)$ is exact, i.e., for any short exact sequence of A modules

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\phi} N \to 0$$

the sequence

$$0 \to \operatorname{Hom}_{A}(N,Q) \xrightarrow{\phi'} \operatorname{Hom}_{A}(M,Q) \xrightarrow{\psi'} \operatorname{Hom}_{A}(L,Q) \to 0$$

is also exact.

(2) For any L, M if sequence of A modules $0 \to L \xrightarrow{\phi} M$ is exact, then any homomorphism f from L to Q lifts to an A module homomorphism F from M to Q.

(3) Every short exact sequence $0 \to Q \to M \to N \to 0$ splits, i.e., if Q is a submodule of the A-module M then Q is a direct summand of M.

An A-module Q satisfying the above equivalent conditions is called **injective**.

Example 6.13. \mathbb{Z} is not an injective \mathbb{Z} -module since the exact sequence $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ is not split.

A \mathbb{Z} -module R is said to be **divisible** if R = nR for all nonzero integers n.

Proposition 6.14. Let Q be an A module.

- Baer's criterion : The module Q is injective if and only if for every left ideal I of A and A-module homomorphism g: I → Q can be extended to an A-module homomorphism G: A → Q.
- (2) If A is a PID then Q is injective if and only if rQ = Q for every nonzero $r \in A$. In particular, a Z-module is injective if and only if it is divisible. When A is a PID, quotient modules of injective A-modules are again injective.

Example 6.15. \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective \mathbb{Z} -modules.

Example 6.16. Arbitrary direct products of injectives are injectives. Arbitrary direct sums of injectives are injective over Noetherian rings.

Example 6.17. No non-zero finitely generated Z-module is injective.

Example 6.18. Let k be a field. Then every module over ring $M_n(k)$ is injective as well as projective.

Example 6.19. Let k be a field and G a finite group of order n. Suppose $n \neq 0$ in k. Then every module over the group ring kG is injective as well as projective.

Example 6.20. A ring A is called **semisimple** if A is a semisimple module over itself. Every module over a semisimple ring is injective as well as projective.

7. Relatively Projective Modules

We give another characterization of free module in a special case as follows:

Proposition 7.1. Let A be a finite dimensional k-algebra. An A-module U is free if and only if U has a subspace X such that any linear transformation from X to any A-module V extends uniquely to a module homomorphism of U to V.

Let B be a subring of A. We say that an A-module U is **relatively** B-free if there exists a B-submodule X of U such that any B-homomorphism of X to any A-module V extends uniquely to an A-homomorphism of U to V. The typical situation for this is A-a finite dimensional k-algebra and B a subalgebra. Observe that if B = k, the trivial subalgebra, relatively free is same as free.

Exercise 7.2. Let H be a subgroup of G. Take A = kG and B = kH. Prove that there exists a relatively H-free kG-module. Let V be an H-module. Then $Ind_{H}^{G}V = kG \otimes_{kH} V$ is relatively free module.

Let B be a subring of A. We consider the situation when B is Noetherian and A is a finitely generated B-module. A finitely generated A-module P is called **relatively** B-projective if for any finitely generated A-modules M, N the exact sequence

$$0 \to M \stackrel{\phi}{\to} N \stackrel{\psi}{\to} P \to 0$$

splits whenever the restricted sequence

$$0 \to M_B \xrightarrow{\phi} N_B \xrightarrow{\psi} P_B \to 0$$

(as *B*-modules) is a split exact sequence.

Exercise 7.3. Let A be finite dimensional algebra over a field k and B a subalgebra. Suppose A is a finitely generated B-free module. Prove that P is projective if and only if P_B is a projective B-module and P is relatively B projective.

Exercise 7.4. Let A be a finite dimensional k-algebra and V a finitely generated A-module. Then V is projective if and only if V is relatively k-projective.

Proposition 7.5 (Relatively Projective). Let A be a finite dimensional k algebra and B a subalgebra. Let U be an A-module. Then the following are equivalent:

(1) $\operatorname{Hom}_A(U, -)$ is exact provided $\operatorname{Hom}_B(U, -)$ is so, i.e., if the sequence of A modules

$$0 \to L \xrightarrow{\psi} M \xrightarrow{\phi} N \to 0$$

is exact then the sequence

$$0 \to \operatorname{Hom}_{A}(U, L) \xrightarrow{\psi'} \operatorname{Hom}_{A}(U, M) \xrightarrow{\phi'} \operatorname{Hom}_{A}(U, N) \to 0$$

is also exact provided it is so for B-module homomorphisms.

(2) For any M, N; if the sequence of A modules M → N → 0 is exact, then any homomorphism f: U → N lifts to an A-module homomorphism F: U → M provided f lifts as B homomorphism.

$$M \xrightarrow{F} N \longrightarrow 0$$

- (3) U is relatively B-projective.
- (4) U is a direct summand of a relatively B-free module.

Proof. It is easy to verify that 1 and 2 are equivalent.

8. GROTHENDIECK GROUP

Let A be a ring and \mathcal{F} be a category of finitely generated left A-modules. The **Grothendieck** group of \mathcal{F} , denoted as $K(\mathcal{F})$, is the Abelian group generated by [E] for each $E \in \mathcal{F}$ and the relations are [E'] = [E] + [E''] for each exact sequence $o \to E \to E' \to E'' \to 0$ in \mathcal{F} .

10

Proposition 8.1 (Universal Property). For any Abelian group H, and a map $\phi: \mathcal{F} \to H$ which is additive, i.e., $\phi(E') = \phi(E) + \phi(E'')$ for each exact sequence $o \to E \to E' \to E'' \to 0$, there exists a unique Abelian group homomorphism $f: K(\mathcal{F}) \to H$ sending [E] to $\phi(E)$.

Example 8.2. Let G be a finite group and k a field of characteristic 0. We consider the category of finite dimensional representations of G over k. Then the Grothendieck group in this case is the Abelian group $R_k(G) = \mathbb{Z}\chi_1 \oplus \cdots \mathbb{Z}\chi_r$ spanned by the irreducible characters. Moreover $R_k(G)$ is a ring.

- **Example 8.3.** (1) Let *L* be a field extension of *k*. Then we have a ring homomorphism $R_k(G) \to R_L(G)$ given by $V \mapsto V \otimes_k L$.
 - (2) Let H be a subgroup of G. Then we have a ring homomorphism $Ind: R_k(H) \to R_k(G)$ given by $V \mapsto Ind_H^G V$. The Frobenius reciprocity says that $Res: R_k(G) \to R_k(H)$ is adjoint of Ind.

Exercise 8.4. Let C be an algebraically closed field containing field k. Let G be a finite group. Then we have $R_k(G) \subset R_C(G)$. We define subset $\overline{R}_k(G) = \{\chi \in R_C(G) \mid Im(\chi) \subset k\}$ then we have

$$R_k(G) \subset \overline{R}_k(G) \subset R_C(G).$$

Then prove the following:

- (1) Let V_i be distinct irreducible representations over k and χ_i be their characters. Then χ_i form a basis of $R_k(G)$ and are mutually orthogonal.
- (2) A representation of G is realizable over k if and only if its character belong to $R_k(G)$.
- (3) Show that every representation over \mathbb{C} is realizable over $\overline{\mathbb{Q}}$ and hence over a number field.

Hint : Look at [Se] chapter 12 Proposition 32 and 33.

Example 8.5. Let k be a field. For the category of finite dimensional vector spaces the Grothendieck group is \mathbb{Z} as any vector space is isomorphic to k^n for some $n \in \mathbb{N}$.

Exercise 8.6. Prove that the Grothendieck group for the category of finitely generated modules over \mathbb{Z} is again \mathbb{Z} .

Exercise 8.7. Let G be a finite group and k be a field of characteristic 0. Consider the category of finitely generated projective G- modules. What is the Grothendieck group. (Direct sum of projectives is projective.)

Exercise 8.8 (Lagrange's Theorem). Let P be a projective kG module and H a subgroup of G. Then P_H (as H-module) is a projective kH-module.

Exercise 8.9. Let k be an algebraically closed field of characteristic p. Prove that for the Abelian group $\mathbb{Z}/n\mathbb{Z}$ with $n = p^a r$ with (r, p) = 1 there are exactly r simple modules and n indecomposable modules.

Hint : Use Jordan canonical form theory.

Exercise 8.10. Let k be an algebraically closed field of characteristic p. Prove that for a p-group there is exactly 1 simple module.

References

- [Al] Alperin, J. L., "Local representation theory", Cambridge Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge, 1986.
- [AB] Alperin, J. L.; Bell R. B., "Groups and Representations", Graduate Texts in Mathematics, 162, Springer-Verlag, New York, 1995.
- [CR1] Curtis C. W.; Reiner I., "Methods of representation theory vol I, With applications to finite groups and orders", Pure and Applied Mathematics, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1981.
- [CR2] Curtis C. W.; Reiner I., "Methods of representation theory vol II, With applications to finite groups and orders", Pure and Applied Mathematics, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1987.
- [CR3] Curtis C. W.; Reiner I., "Representation theory of finite groups and associative algebras", Pure and Applied Mathematics, Vol. XI Interscience Publishers, a division of John Wiley & Sons, New York-London 1962.
- [D1] Dornhoff L., "Group representation theory. Part A: Ordinary representation theory", Pure and Applied Mathematics, 7. Marcel Dekker, Inc., New York, 1971.
- [D2] Dornhoff, L., "Group representation theory. Part B: Modular representation theory". Pure and Applied Mathematics, 7. Marcel Dekker, Inc., New York, 1972.
- [Fe] Feit, Walter, "The representation theory of finite groups" North-Holland Mathematical Library, 25. North-Holland Publishing Co., Amsterdam-New York, 1982.
- [FH] Fulton; Harris, "Representation theory: A first course" Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991.
- [Hu] Humphreys, James E., "Modular representations of finite groups of Lie type", London Mathematical Society Lecture Note Series, 326. Cambridge University Press, Cambridge, 2006.
- [Se] Serre J.P., "Linear representations of finite groups" Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977..
- [Si] Simon, B., "Representations of finite and compact groups" Graduate Studies in Mathematics, 10, American Mathematical Society, Providence, RI, 1996.
- [M] Musili C. S., "Representations of finite groups" Texts and Readings in Mathematics, Hindustan Book Agency, Delhi, 1993.
- [DF] Dummit D. S.; Foote R. M. "Abstract algebra", Third edition, John Wiley & Sons, Inc., Hoboken, NJ, 2004.
- [L] Lang, "Algebra", Second edition, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984.
- [JL] James, Gordon; Liebeck, Martin, "Representations and characters of groups", Second edition, Cambridge University Press, New York, 2001.

IISER, CENTRAL TOWER, SAI TRINITY BUILDING, PASHAN CIRCLE, PUNE 411021 INDIA *E-mail address*: anupam@iiserpune.ac.in